Open-source all-in-one LabToGo Office Chromatography.

Cytotoxicity detection Miniaturized planar chromatography system On-site analysis Point-of-care analysis Stevia leave analysis Water screening

Journal

Analytica chimica acta
ISSN: 1873-4324
Titre abrégé: Anal Chim Acta
Pays: Netherlands
ID NLM: 0370534

Informations de publication

Date de publication:
22 Aug 2021
Historique:
received: 17 04 2021
revised: 16 05 2021
accepted: 25 05 2021
entrez: 12 7 2021
pubmed: 13 7 2021
medline: 15 7 2021
Statut: ppublish

Résumé

Print and media technologies were used uncommonly in the field of chromatography and explored in application to create a miniaturized all-in-one LabToGo system. This novel research field termed Office Chromatography (OC) uses additive manufacturing in terms of 3D printing of operational parts as well as open-source hard- and software. The OCLab2 presented here has been considerably extended in its functionalities. For inkjet printing of solutions, a newly designed printhead was manufactured controlled by a self-constructed ink-jet board, allowing to check the nozzles' resistance heating circuit. Plate heating was newly integrated, especially favorable for the demonstrated application of higher volumes of aqueous samples. The UV/Vis/FLD plate images were captured by a Raspberry Pi V2 camera module under illumination by novel light emitting diodes (LEDs) for highly selective RGBW color (Vis), UVC 278-nm (UV) and UVA 366-nm (FLD) detection, installed in a newly created miniature cabinet to protect from extraneous light. The spectral separation of differently colored food dyes was achieved by the fully addressable driver controlled RGBW LEDs. The software was newly written in R to speed-up the processes, supported by the new Raspberry Pi 4B computer with 4 GB RAM. The analysis of Stevia leaves for steviol glycosides yielded results comparable to the status quo. Different water samples were analyzed for bioactive compounds. Thereby, compounds of general cytotoxicity were effect-directed detected by bioluminescent A. fischeri bacteria. It allowed the bioanalytical screening for potential risks in tap water, surface waters, rain water, landfill leachates and biogas slurries.

Identifiants

pubmed: 34247737
pii: S0003-2670(21)00528-6
doi: 10.1016/j.aca.2021.338702
pii:
doi:

Substances chimiques

Water Pollutants, Chemical 0
Water 059QF0KO0R

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

338702

Informations de copyright

Copyright © 2021 Elsevier B.V. All rights reserved.

Déclaration de conflit d'intérêts

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Auteurs

Fred Schade (F)

Chair of Food Science, Institute of Nutritional Science, and Interdisciplinary Research Center (iFZ), Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.

Wolfgang Schwack (W)

Chair of Food Science, Institute of Nutritional Science, and Interdisciplinary Research Center (iFZ), Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.

Yetkin Demirbas (Y)

Chair of Food Science, Institute of Nutritional Science, and Interdisciplinary Research Center (iFZ), Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.

Gertrud E Morlock (GE)

Chair of Food Science, Institute of Nutritional Science, and Interdisciplinary Research Center (iFZ), Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany. Electronic address: Gertrud.Morlock@uni-giessen.de.

Articles similaires

Genome, Viral Ralstonia Composting Solanum lycopersicum Bacteriophages
Animals Dietary Fiber Dextran Sulfate Mice Disease Models, Animal
Semiconductors Photosynthesis Polymers Carbon Dioxide Bacteria
Fragaria Light Plant Leaves Osmosis Stress, Physiological

Classifications MeSH