Micron-sized particle separation with standing surface acoustic wave-Experimental and numerical approaches.
Acoustofluidics
Finite element modeling
Microfluidics
Particle separation
Surface acoustic wave
Journal
Ultrasonics sonochemistry
ISSN: 1873-2828
Titre abrégé: Ultrason Sonochem
Pays: Netherlands
ID NLM: 9433356
Informations de publication
Date de publication:
Aug 2021
Aug 2021
Historique:
received:
17
02
2021
revised:
11
05
2021
accepted:
18
06
2021
pubmed:
10
7
2021
medline:
10
7
2021
entrez:
9
7
2021
Statut:
ppublish
Résumé
Traditional cell/particle isolation methods are time-consuming and expensive and can lead to morphology disruptions due to high induced shear stress. To address these problems, novel lab-on-a-chip-based purification methods have been employed. Among various methods introduced for the separation and purification of cells and synthetics particles, acoustofluidics has been one of the most effective methods. Unlike traditional separation techniques carried out in clinical laboratories based on chemical properties, the acoustofluidic process relies on the physical properties of the sample. Using acoustofluidics, manipulating cells and particles can be achieved in a label-free, contact-free, and highly biocompatible manner. To optimize the functionality of the platform, the numerical study should be taken into account before conducting experimental tests to save time and reduce fabrication expenses. Most current numerical studies have only considered one-dimensional harmonic standing waves to simulate the acoustic pressure distribution. However, one-dimensional simulations cannot calculate the actual acoustic pressure distribution inside the microchannel due to its limitation in considering longitudinal waves. To address this limitation, a two-dimensional numerical simulation was conducted in this study. Our numerical simulation investigates the effects of the platform geometrical and operational conditions on the separation efficiency. Next, the optimal values are tested in an experimental setting to validate these optimal parameters and conditions. This work provides a guideline for future acoustofluidic chip designs with a high degree of reproducibility and efficiency.
Identifiants
pubmed: 34242866
pii: S1350-4177(21)00193-0
doi: 10.1016/j.ultsonch.2021.105651
pmc: PMC8267599
pii:
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
105651Informations de copyright
Copyright © 2021 The Authors. Published by Elsevier B.V. All rights reserved.
Références
Lab Chip. 2016 Feb 7;16(3):515-24
pubmed: 26698361
Lab Chip. 2015 Jun 21;15(12):2700-9
pubmed: 26001199
Lab Chip. 2012 Dec 21;12(24):5202-10
pubmed: 23111789
Lab Chip. 2013 Sep 21;13(18):3626-49
pubmed: 23900527
Lab Chip. 2015 Jul 7;15(13):2722-38
pubmed: 26016538
Sci Rep. 2017 Apr 24;7:46224
pubmed: 28436447
Lab Chip. 2018 Sep 26;18(19):2936-2945
pubmed: 30140820
ACS Nano. 2015 Mar 24;9(3):2321-7
pubmed: 25672598
Lab Chip. 2012 Nov 21;12(22):4617-27
pubmed: 23010952
Bioengineering (Basel). 2017 Mar 29;4(2):
pubmed: 28952506
Sci Rep. 2017 Dec 7;7(1):17161
pubmed: 29215046
Anal Bioanal Chem. 2008 Jul;391(5):1509-19
pubmed: 18265962
Lab Chip. 2014 Oct 7;14(19):3773-80
pubmed: 25099143
Analyst. 2018 Dec 17;144(1):87-113
pubmed: 30402633
Biomed Microdevices. 2012 Apr;14(2):279-89
pubmed: 22076383
Lab Chip. 2009 Dec 7;9(23):3354-9
pubmed: 19904400
Lab Chip. 2014 Dec 21;14(24):4665-72
pubmed: 25312065
Lab Chip. 2014 Jun 7;14(11):1891-900
pubmed: 24722878
Lab Chip. 2016 Feb 7;16(3):489-96
pubmed: 26645590
Proc Natl Acad Sci U S A. 2017 Oct 3;114(40):10584-10589
pubmed: 28923936
Micromachines (Basel). 2019 Jan 13;10(1):
pubmed: 30642118
ACS Nano. 2017 Feb 28;11(2):1360-1370
pubmed: 28068467
Anal Chem. 2017 Nov 21;89(22):12192-12200
pubmed: 29039191
J Colloid Interface Sci. 2015 Oct 1;455:203-11
pubmed: 26070191
J Micromech Microeng. 2017 Jan 1;27(1):
pubmed: 28798539
Sensors (Basel). 2012;12(1):905-22
pubmed: 22368502
Lab Chip. 2015 Jul 7;15(13):2896-905
pubmed: 26037897
ACS Nano. 2017 Jul 25;11(7):6968-6976
pubmed: 28679045
Proc Natl Acad Sci U S A. 2014 Sep 9;111(36):12992-7
pubmed: 25157150
Biomicrofluidics. 2015 Feb 05;9(1):014112
pubmed: 25713694
Nat Nanotechnol. 2016 Nov;11(11):936-940
pubmed: 27479757
Lab Chip. 2016 Dec 20;17(1):11-33
pubmed: 27830852
Sci Rep. 2020 Jul 16;10(1):11718
pubmed: 32678180
Sensors (Basel). 2009;9(7):5740-69
pubmed: 22346725
Lab Chip. 2012 Sep 7;12(17):2998-3007
pubmed: 22842855
Lab Chip. 2018 Jul 10;18(14):1952-1996
pubmed: 29922774
Biomicrofluidics. 2018 Mar 06;12(2):024103
pubmed: 30867854
Sci Rep. 2015 Jul 03;5:11851
pubmed: 26138310
Soft Matter. 2006 Aug 16;2(9):738-750
pubmed: 32680214
APL Bioeng. 2019 Mar 27;3(1):011503
pubmed: 31069333