Micron-sized particle separation with standing surface acoustic wave-Experimental and numerical approaches.

Acoustofluidics Finite element modeling Microfluidics Particle separation Surface acoustic wave

Journal

Ultrasonics sonochemistry
ISSN: 1873-2828
Titre abrégé: Ultrason Sonochem
Pays: Netherlands
ID NLM: 9433356

Informations de publication

Date de publication:
Aug 2021
Historique:
received: 17 02 2021
revised: 11 05 2021
accepted: 18 06 2021
pubmed: 10 7 2021
medline: 10 7 2021
entrez: 9 7 2021
Statut: ppublish

Résumé

Traditional cell/particle isolation methods are time-consuming and expensive and can lead to morphology disruptions due to high induced shear stress. To address these problems, novel lab-on-a-chip-based purification methods have been employed. Among various methods introduced for the separation and purification of cells and synthetics particles, acoustofluidics has been one of the most effective methods. Unlike traditional separation techniques carried out in clinical laboratories based on chemical properties, the acoustofluidic process relies on the physical properties of the sample. Using acoustofluidics, manipulating cells and particles can be achieved in a label-free, contact-free, and highly biocompatible manner. To optimize the functionality of the platform, the numerical study should be taken into account before conducting experimental tests to save time and reduce fabrication expenses. Most current numerical studies have only considered one-dimensional harmonic standing waves to simulate the acoustic pressure distribution. However, one-dimensional simulations cannot calculate the actual acoustic pressure distribution inside the microchannel due to its limitation in considering longitudinal waves. To address this limitation, a two-dimensional numerical simulation was conducted in this study. Our numerical simulation investigates the effects of the platform geometrical and operational conditions on the separation efficiency. Next, the optimal values are tested in an experimental setting to validate these optimal parameters and conditions. This work provides a guideline for future acoustofluidic chip designs with a high degree of reproducibility and efficiency.

Identifiants

pubmed: 34242866
pii: S1350-4177(21)00193-0
doi: 10.1016/j.ultsonch.2021.105651
pmc: PMC8267599
pii:
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

105651

Informations de copyright

Copyright © 2021 The Authors. Published by Elsevier B.V. All rights reserved.

Références

Lab Chip. 2016 Feb 7;16(3):515-24
pubmed: 26698361
Lab Chip. 2015 Jun 21;15(12):2700-9
pubmed: 26001199
Lab Chip. 2012 Dec 21;12(24):5202-10
pubmed: 23111789
Lab Chip. 2013 Sep 21;13(18):3626-49
pubmed: 23900527
Lab Chip. 2015 Jul 7;15(13):2722-38
pubmed: 26016538
Sci Rep. 2017 Apr 24;7:46224
pubmed: 28436447
Lab Chip. 2018 Sep 26;18(19):2936-2945
pubmed: 30140820
ACS Nano. 2015 Mar 24;9(3):2321-7
pubmed: 25672598
Lab Chip. 2012 Nov 21;12(22):4617-27
pubmed: 23010952
Bioengineering (Basel). 2017 Mar 29;4(2):
pubmed: 28952506
Sci Rep. 2017 Dec 7;7(1):17161
pubmed: 29215046
Anal Bioanal Chem. 2008 Jul;391(5):1509-19
pubmed: 18265962
Lab Chip. 2014 Oct 7;14(19):3773-80
pubmed: 25099143
Analyst. 2018 Dec 17;144(1):87-113
pubmed: 30402633
Biomed Microdevices. 2012 Apr;14(2):279-89
pubmed: 22076383
Lab Chip. 2009 Dec 7;9(23):3354-9
pubmed: 19904400
Lab Chip. 2014 Dec 21;14(24):4665-72
pubmed: 25312065
Lab Chip. 2014 Jun 7;14(11):1891-900
pubmed: 24722878
Lab Chip. 2016 Feb 7;16(3):489-96
pubmed: 26645590
Proc Natl Acad Sci U S A. 2017 Oct 3;114(40):10584-10589
pubmed: 28923936
Micromachines (Basel). 2019 Jan 13;10(1):
pubmed: 30642118
ACS Nano. 2017 Feb 28;11(2):1360-1370
pubmed: 28068467
Anal Chem. 2017 Nov 21;89(22):12192-12200
pubmed: 29039191
J Colloid Interface Sci. 2015 Oct 1;455:203-11
pubmed: 26070191
J Micromech Microeng. 2017 Jan 1;27(1):
pubmed: 28798539
Sensors (Basel). 2012;12(1):905-22
pubmed: 22368502
Lab Chip. 2015 Jul 7;15(13):2896-905
pubmed: 26037897
ACS Nano. 2017 Jul 25;11(7):6968-6976
pubmed: 28679045
Proc Natl Acad Sci U S A. 2014 Sep 9;111(36):12992-7
pubmed: 25157150
Biomicrofluidics. 2015 Feb 05;9(1):014112
pubmed: 25713694
Nat Nanotechnol. 2016 Nov;11(11):936-940
pubmed: 27479757
Lab Chip. 2016 Dec 20;17(1):11-33
pubmed: 27830852
Sci Rep. 2020 Jul 16;10(1):11718
pubmed: 32678180
Sensors (Basel). 2009;9(7):5740-69
pubmed: 22346725
Lab Chip. 2012 Sep 7;12(17):2998-3007
pubmed: 22842855
Lab Chip. 2018 Jul 10;18(14):1952-1996
pubmed: 29922774
Biomicrofluidics. 2018 Mar 06;12(2):024103
pubmed: 30867854
Sci Rep. 2015 Jul 03;5:11851
pubmed: 26138310
Soft Matter. 2006 Aug 16;2(9):738-750
pubmed: 32680214
APL Bioeng. 2019 Mar 27;3(1):011503
pubmed: 31069333

Auteurs

Erfan Taatizadeh (E)

School of Engineering, Faculty of Applied Science, The University of British Columbia, Kelowna, BC V1V 1V7, Canada; Department of Chemistry, Irving K. Barber Faculty of Science, The University of British Columbia, Kelowna, BC V1V 1V7, Canada; School of Biomedical Engineering, Faculties of Applied Science and Medicine, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada.

Arash Dalili (A)

School of Engineering, Faculty of Applied Science, The University of British Columbia, Kelowna, BC V1V 1V7, Canada.

Pamela Inés Rellstab-Sánchez (PI)

School of Engineering, Faculty of Applied Science, The University of British Columbia, Kelowna, BC V1V 1V7, Canada.

Hamed Tahmooressi (H)

School of Engineering, Faculty of Applied Science, The University of British Columbia, Kelowna, BC V1V 1V7, Canada.

Adithya Ravishankara (A)

School of Engineering, Faculty of Applied Science, The University of British Columbia, Kelowna, BC V1V 1V7, Canada.

Nishat Tasnim (N)

School of Engineering, Faculty of Applied Science, The University of British Columbia, Kelowna, BC V1V 1V7, Canada.

Homayoun Najjaran (H)

School of Engineering, Faculty of Applied Science, The University of British Columbia, Kelowna, BC V1V 1V7, Canada.

Isaac T S Li (ITS)

Department of Chemistry, Irving K. Barber Faculty of Science, The University of British Columbia, Kelowna, BC V1V 1V7, Canada.

Mina Hoorfar (M)

School of Engineering, Faculty of Applied Science, The University of British Columbia, Kelowna, BC V1V 1V7, Canada. Electronic address: mina.hoorfar@ubc.ca.

Classifications MeSH