A two-stage computational approach to predict novel ligands for a chemosensory receptor.

APF, Atomic property field Amber, Assisted model Building with Energy Refinement Atomic property field Binding free energy calculation CSF, Cerebrospinal fluid ECL, Extracellular loop GPCR, G protein coupled receptor HCMV, Human cytomegalovirus HMDB, Human metabolome database Hydrophobicity correspondence LBVS, Ligand based virtual screening LC, Lung carcinoids MD, Molecular dynamics MMGBSA, Molecular mechanics generalized born surface area MMPBSA, Molecular mechanics Poisson–Boltzmann surface area Molecular dynamics NAFLD, Non-alcoholic fatty liver disease NASH, Nonalcoholic steatohepatitis OR, olfactory receptor OR1A2 Olfactory receptor PMEMD, Particle-Mesh Ewald Molecular Dynamics POPC, 1-palmitoyl-2-oleoyl-sn-glycero- 3-phosphatidylcholine RMSD, Root mean square deviation RMSF, Root mean square fluctuation SBVS, Structure based virtual screening SSD, Sum of squared difference TM, Transmembrane Virtual ligand screening

Journal

Current research in structural biology
ISSN: 2665-928X
Titre abrégé: Curr Res Struct Biol
Pays: Netherlands
ID NLM: 101767537

Informations de publication

Date de publication:
2020
Historique:
received: 17 03 2020
revised: 29 09 2020
accepted: 03 10 2020
entrez: 8 7 2021
pubmed: 9 7 2021
medline: 9 7 2021
Statut: epublish

Résumé

Olfactory receptor (OR) 1A2 is the member of largest superfamily of G protein-coupled receptors (GPCRs). OR1A2 is an ectopically expressed receptor with only 13 known ligands, implicated in reducing hepatocellular carcinoma progression, with enormous therapeutic potential. We have developed a two-stage screening approach to identify novel putative ligands of OR1A2. We first used a pharmacophore model based on atomic property field (APF) to virtually screen a library of 5942 human metabolites. We then carried out structure-based virtual screening (SBVS) for predicting the potential agonists, based on a 3D homology model of OR1A2. This model was developed using a biophysical approach for template selection, based on multiple parameters including hydrophobicity correspondence, applied to the complete set of available GPCR structures to pick the most appropriate template. Finally, the membrane-embedded 3D model was refined by molecular dynamics (MD) simulations in both the

Identifiants

pubmed: 34235481
doi: 10.1016/j.crstbi.2020.10.001
pii: S2665-928X(20)30021-0
pmc: PMC8244491
doi:

Types de publication

Journal Article

Langues

eng

Pagination

213-221

Informations de copyright

© 2020 The Authors.

Déclaration de conflit d'intérêts

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Références

J Phys Chem Lett. 2018 May 3;9(9):2235-2240
pubmed: 29648835
J Chem Inf Model. 2015 Jun 22;55(6):1181-91
pubmed: 26000704
Front Physiol. 2018 Nov 27;9:1673
pubmed: 30542293
Nature. 2007 Sep 27;449(7161):468-72
pubmed: 17873857
J Chem Theory Comput. 2014 Feb 11;10(2):865-879
pubmed: 24803855
Sci Rep. 2015 Oct 09;5:14948
pubmed: 26449412
J Cosmet Dermatol. 2021 Mar;20(3):784-791
pubmed: 32645251
Proc Natl Acad Sci U S A. 2018 Apr 24;115(17):E3950-E3958
pubmed: 29632183
Annu Rev Biochem. 2018 Jun 20;87:897-919
pubmed: 29925258
Front Oncol. 2018 May 28;8:162
pubmed: 29892571
Biochem Biophys Res Commun. 2017 Apr 1;485(2):241-248
pubmed: 28235481
J Lipid Res. 1974 Nov;15(6):551-6
pubmed: 4372285
J Receptor Ligand Channel Res. 2010;2010(3):123-133
pubmed: 21984869
J Comput Chem. 2004 Jan 30;25(2):238-50
pubmed: 14648622
J Am Chem Soc. 2015 Jul 8;137(26):8611-8616
pubmed: 26090619
Nucleic Acids Res. 2016 Jan 4;44(D1):D1202-13
pubmed: 26400175
J Mol Graph Model. 2019 Jan;86:235-246
pubmed: 30390544
J Comput Chem. 2004 Jul 15;25(9):1157-74
pubmed: 15116359
R J. 2017 May 10;9(1):164-186
pubmed: 28845302
PLoS Med. 2018 Oct 10;15(10):e1002670
pubmed: 30303968
Trends Biochem Sci. 2019 Apr;44(4):312-330
pubmed: 30612897
Chem Biol Drug Des. 2008 Jan;71(1):15-27
pubmed: 18069986
Arch Biochem Biophys. 2015 Jan 15;566:100-9
pubmed: 25513961
Nat Rev Drug Discov. 2019 Feb;18(2):116-138
pubmed: 30504792
BMC Bioinformatics. 2015 Jul 02;16:206
pubmed: 26134144
J Mol Graph Model. 2017 Sep;76:488-503
pubmed: 28818718
Sci Rep. 2015 Aug 24;5:13180
pubmed: 26299310
PLoS One. 2015 Apr 16;10(4):e0123533
pubmed: 25881057
J Comput Aided Mol Des. 2012 Jun;26(6):675-86
pubmed: 22569591
Cell Mol Life Sci. 2017 Nov;74(22):4209-4229
pubmed: 28656349
Curr Protoc Bioinformatics. 2016 Jun 20;54:1.30.1-1.30.33
pubmed: 27322403
Nat Commun. 2017 Jan 24;8:14271
pubmed: 28117396
Front Mol Biosci. 2019 May 03;6:29
pubmed: 31131282
Bioinform Biol Insights. 2014 Jun 12;8:147-58
pubmed: 25002814
Proc Natl Acad Sci U S A. 2019 Apr 2;116(14):7043-7052
pubmed: 30894498
Angew Chem Int Ed Engl. 2018 Apr 16;57(17):4554-4558
pubmed: 29462498
J Chem Theory Comput. 2015 Aug 11;11(8):3696-713
pubmed: 26574453
PLoS Comput Biol. 2016 Mar 30;12(3):e1004805
pubmed: 27028541
Front Physiol. 2018 May 16;9:456
pubmed: 29867524
Zhonghua Gan Zang Bing Za Zhi. 2018 Jun 20;26(6):451-456
pubmed: 30317760
Curr Opin Struct Biol. 2019 Apr;55:66-76
pubmed: 31005679
Cell. 1991 Apr 5;65(1):175-87
pubmed: 1840504
Nature. 2013 Feb 14;494(7436):185-94
pubmed: 23407534
Elife. 2019 Dec 19;8:
pubmed: 31855179
J Struct Biol. 2007 Sep;159(3):400-12
pubmed: 17601748
Clin Pharmacol Ther. 2016 Nov;100(5):524-536
pubmed: 27447836
Curr Top Med Chem. 2012;12(17):1869-82
pubmed: 23116466
Curr Opin Pharmacol. 2016 Oct;30:76-83
pubmed: 27497048
Expert Opin Drug Discov. 2015 May;10(5):449-61
pubmed: 25835573
J Comput Chem. 2008 Aug;29(11):1859-65
pubmed: 18351591
Chem Senses. 2017 Mar 1;42(3):195-210
pubmed: 27916748
Nucleic Acids Res. 2007 Jan;35(Database issue):D521-6
pubmed: 17202168
Mol Cell Proteomics. 2005 Jun;4(6):752-61
pubmed: 15757999
Nucleic Acids Res. 2018 Jan 4;46(D1):D440-D446
pubmed: 29155946
J Chem Theory Comput. 2013 Jul 9;9(7):3084-95
pubmed: 26583988
J Invest Dermatol. 2014 Nov;134(11):2823-2832
pubmed: 24999593
Theor Biol Med Model. 2004 Aug 16;1:5
pubmed: 15312230
Nucleic Acids Res. 2018 Jan 4;46(D1):D608-D617
pubmed: 29140435
Biophys Rev. 2012 Sep;4(3):255-269
pubmed: 28510073
J Chem Inf Model. 2012 Jan 23;52(1):225-32
pubmed: 22148635
Methods Mol Biol. 2017;1654:39-54
pubmed: 28986782
Angew Chem Int Ed Engl. 2012 Jan 27;51(5):1274-8
pubmed: 22144177
J Biomol Struct Dyn. 2018 Jul;36(9):2436-2448
pubmed: 28728517
Nat Rev Drug Discov. 2013 Jan;12(1):25-34
pubmed: 23237917
Proc Natl Acad Sci U S A. 2015 Dec 1;112(48):14966-71
pubmed: 26627247
PLoS One. 2017 Apr 12;12(4):e0175479
pubmed: 28403188
PLoS One. 2014 Mar 17;9(3):e92064
pubmed: 24637889
J Chem Inf Model. 2014 Jun 23;54(6):1661-8
pubmed: 24813470
J Comput Aided Mol Des. 2010 Mar;24(3):173-82
pubmed: 20229197
Sci Rep. 2017 Nov 22;7(1):16007
pubmed: 29167480
Chem Senses. 2017 Mar 1;42(3):177-179
pubmed: 28200040
Nucleic Acids Res. 2012 Jan;40(Database issue):D370-6
pubmed: 21890895
PLoS One. 2017 Dec 15;12(12):e0189965
pubmed: 29244873
Exp Dermatol. 2017 Jan;26(1):58-65
pubmed: 27315375
Protein Sci. 2015 Sep;24(9):1543-8
pubmed: 26044705
Mol Biol Evol. 2016 Jul;33(7):1870-4
pubmed: 27004904
Wellcome Open Res. 2017 Feb 10;2:9
pubmed: 28492065
Biochemistry. 2011 Feb 8;50(5):843-53
pubmed: 21142015
Molecules. 2015 Sep 18;20(9):17339-61
pubmed: 26393565
Front Oncol. 2018 Feb 15;8:33
pubmed: 29497600
Cell. 2017 Jul 27;170(3):414-427
pubmed: 28753422

Auteurs

Amara Jabeen (A)

Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.

Ramya Vijayram (R)

Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamilnadu, India.

Shoba Ranganathan (S)

Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.

Classifications MeSH