SUMO fosters assembly and functionality of the MutSγ complex to facilitate meiotic crossing over.
Cell Nucleus
/ genetics
Chromosome Segregation
Crossing Over, Genetic
DNA
/ genetics
DNA Damage
DNA Repair
DNA-Binding Proteins
/ genetics
Meiosis
Saccharomyces cerevisiae
/ genetics
Saccharomyces cerevisiae Proteins
/ genetics
Small Ubiquitin-Related Modifier Proteins
/ genetics
Sumoylation
Ubiquitin-Conjugating Enzymes
/ genetics
DNA repair
MutS
SUMO
aneuploidy
chromosome segregation
crossing over
double-strand break
homologous recombination
meiosis
protein modification
Journal
Developmental cell
ISSN: 1878-1551
Titre abrégé: Dev Cell
Pays: United States
ID NLM: 101120028
Informations de publication
Date de publication:
26 07 2021
26 07 2021
Historique:
received:
07
10
2020
revised:
31
03
2021
accepted:
10
06
2021
pubmed:
3
7
2021
medline:
10
11
2021
entrez:
2
7
2021
Statut:
ppublish
Résumé
Crossing over is essential for chromosome segregation during meiosis. Protein modification by SUMO is implicated in crossover control, but pertinent targets have remained elusive. Here we identify Msh4 as a target of SUMO-mediated crossover regulation. Msh4 and Msh5 constitute the MutSγ complex, which stabilizes joint-molecule (JM) recombination intermediates and facilitates their resolution into crossovers. Msh4 SUMOylation enhances these processes to ensure that each chromosome pair acquires at least one crossover. Msh4 is directly targeted by E2 conjugase Ubc9, initially becoming mono-SUMOylated in response to DNA double-strand breaks, then multi/poly-SUMOylated forms arise as homologs fully engage. Mechanistically, SUMOylation fosters interaction between Msh4 and Msh5. We infer that initial SUMOylation of Msh4 enhances assembly of MutSγ in anticipation of JM formation, while secondary SUMOylation may promote downstream functions. Regulation of Msh4 by SUMO is distinct and independent of its previously described stabilization by phosphorylation, defining MutSγ as a hub for crossover control.
Identifiants
pubmed: 34214491
pii: S1534-5807(21)00519-0
doi: 10.1016/j.devcel.2021.06.012
pmc: PMC8319151
mid: NIHMS1717573
pii:
doi:
Substances chimiques
DNA-Binding Proteins
0
MSH4 protein, S cerevisiae
0
MSH5 protein, S cerevisiae
0
Saccharomyces cerevisiae Proteins
0
Small Ubiquitin-Related Modifier Proteins
0
DNA
9007-49-2
Ubiquitin-Conjugating Enzymes
EC 2.3.2.23
ubiquitin-conjugating enzyme UBC9
EC 6.3.2.-
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
2073-2088.e3Subventions
Organisme : NIGMS NIH HHS
ID : R01 GM074223
Pays : United States
Organisme : NIGMS NIH HHS
ID : R15 GM135904
Pays : United States
Organisme : Howard Hughes Medical Institute
Pays : United States
Informations de copyright
Copyright © 2021 Elsevier Inc. All rights reserved.
Déclaration de conflit d'intérêts
Declaration of interests The authors declare no competing interests.
Références
Cell. 2012 Apr 13;149(2):334-47
pubmed: 22500800
Annu Rev Cell Dev Biol. 2006;22:159-80
pubmed: 16753028
Mol Cell. 2010 Dec 22;40(6):1001-15
pubmed: 21172664
Genes Dev. 2018 Feb 1;32(3-4):283-296
pubmed: 29440262
Methods Mol Biol. 2009;497:167-86
pubmed: 19107417
Cell. 2001 Jul 13;106(1):59-70
pubmed: 11461702
Elife. 2017 Jan 04;6:
pubmed: 28051769
Sci Adv. 2019 Jan 23;5(1):eaau9780
pubmed: 30746471
Bioessays. 2019 Oct;41(10):e1800221
pubmed: 31424607
Nat Rev Mol Cell Biol. 2010 Dec;11(12):861-71
pubmed: 21102611
Yeast. 1994 Dec;10(13):1793-808
pubmed: 7747518
Curr Biol. 2006 Jun 20;16(12):1238-43
pubmed: 16782016
PLoS Genet. 2013;9(10):e1003837
pubmed: 24098146
J Cell Sci. 2011 Aug 15;124(Pt 16):2687-91
pubmed: 21771883
J Cell Biol. 2015 Nov 23;211(4):785-93
pubmed: 26598615
Genome Biol. 2014 Jul 31;15(7):422
pubmed: 25315341
Cell. 2017 Mar 9;168(6):977-989.e17
pubmed: 28262352
Annu Rev Genet. 2013;47:167-86
pubmed: 24016193
J Cell Biol. 1999 Nov 29;147(5):981-94
pubmed: 10579719
Genes Dev. 2006 Aug 1;20(15):2067-81
pubmed: 16847351
Nat Genet. 2014 Feb;46(2):194-9
pubmed: 24390283
Nat Biotechnol. 2010 Aug;28(8):868-73
pubmed: 20639865
Cell. 2001 Jul 13;106(1):47-57
pubmed: 11461701
Nat Genet. 2013 Mar;45(3):269-78
pubmed: 23396135
Cold Spring Harb Symp Quant Biol. 2017;82:223-234
pubmed: 29222342
J Biol Chem. 2008 Dec 19;283(51):35966-75
pubmed: 18842587
Cold Spring Harb Perspect Biol. 2015 May 18;7(6):
pubmed: 25986558
Science. 2017 Jan 6;355(6320):40-45
pubmed: 28059759
Annu Rev Biochem. 2013;82:357-85
pubmed: 23746258
Mol Cell. 2005 Jul 1;19(1):123-33
pubmed: 15989970
Methods Mol Biol. 2009;558:15-36
pubmed: 19685316
Bioinformatics. 2015 Nov 1;31(21):3483-91
pubmed: 26142185
Elife. 2021 Jan 27;10:
pubmed: 33502312
Nature. 2014 Jun 12;510(7504):241-6
pubmed: 24717437
Cold Spring Harb Perspect Biol. 2015 Oct 28;7(12):
pubmed: 26511629
Cell. 2002 Feb 8;108(3):345-56
pubmed: 11853669
Mol Cell. 2004 Aug 13;15(3):437-51
pubmed: 15304223
Nature. 2020 Oct;586(7830):618-622
pubmed: 32814904
Am J Physiol Cell Physiol. 2016 Aug 1;311(2):C284-96
pubmed: 27335169
Mol Cell. 2015 Mar 5;57(5):797-811
pubmed: 25661491
PLoS Genet. 2018 May 9;14(5):e1007381
pubmed: 29742103
Cell. 1995 Dec 1;83(5):783-91
pubmed: 8521495
PLoS Genet. 2013;9(12):e1004067
pubmed: 24385936
Genes Dev. 2015 Aug 1;29(15):1593-8
pubmed: 26253534
PLoS Genet. 2013 Apr;9(4):e1003416
pubmed: 23593021
PLoS Genet. 2013 Mar;9(3):e1003383
pubmed: 23555294
Curr Biol. 2005 Apr 12;15(7):616-23
pubmed: 15823533
Methods Enzymol. 2002;350:3-41
pubmed: 12073320
Genes Dev. 2019 Oct 1;33(19-20):1346-1354
pubmed: 31575678
Plant J. 2005 Aug;43(3):321-34
pubmed: 16045469
Nature. 2020 Oct;586(7830):623-627
pubmed: 32814343
Curr Biol. 2012 Sep 11;22(17):1576-81
pubmed: 22771040
Cell. 2004 Apr 2;117(1):29-45
pubmed: 15066280
Cell. 2004 Apr 2;117(1):47-56
pubmed: 15066281
J Cell Biol. 1995 Feb;128(4):455-66
pubmed: 7860625
Nat Rev Mol Cell Biol. 2012 May 16;13(6):370-82
pubmed: 22588367
Mol Cell. 2018 Aug 2;71(3):409-418
pubmed: 30075142
Cold Spring Harb Perspect Biol. 2015 Apr 01;7(4):a017970
pubmed: 25833844
Genetics. 2004 Sep;168(1):49-63
pubmed: 15454526
J Proteome Res. 2006 Apr;5(4):761-70
pubmed: 16602682
Proc Natl Acad Sci U S A. 2004 Mar 30;101(13):4519-24
pubmed: 15070750
Mol Cell. 2010 Aug 13;39(3):444-54
pubmed: 20705245
Science. 2017 Jan 27;355(6323):403-407
pubmed: 28059716
PLoS Genet. 2013;9(12):e1003978
pubmed: 24367271
DNA Repair (Amst). 2016 Feb;38:84-93
pubmed: 26686657
Mol Cell. 2020 Apr 2;78(1):168-183.e5
pubmed: 32130890
Mol Cell Biol. 2002 May;22(10):3281-91
pubmed: 11971962
EMBO J. 2010 Feb 3;29(3):586-96
pubmed: 19959993
Methods Enzymol. 2018;601:275-307
pubmed: 29523236
Cold Spring Harb Perspect Biol. 2014 Dec 04;7(1):a016659
pubmed: 25475089
J Biol Chem. 2008 Jan 4;283(1):145-154
pubmed: 17977839
Nature. 2014 Jul 31;511(7511):551-6
pubmed: 25043020
Mol Cell. 2008 Feb 29;29(4):517-24
pubmed: 18313389
Genetics. 2008 May;179(1):701-4
pubmed: 18493082
Genetics. 1949 Sep;34(5):607-26
pubmed: 17247336
Nucleic Acids Res. 2019 Mar 18;47(5):2365-2376
pubmed: 30566683
Semin Cell Dev Biol. 2016 Jun;54:177-87
pubmed: 26880205
Cell. 2007 Jul 27;130(2):259-72
pubmed: 17662941
Genetics. 1952 Mar;37(2):175-88
pubmed: 17247384
J Vis Exp. 2015 Aug 09;(102):e53081
pubmed: 26325523
PLoS Genet. 2019 Jun 20;15(6):e1008201
pubmed: 31220082
Mol Cell. 2015 Jan 8;57(1):123-37
pubmed: 25533188