A Prospectively Validated Prognostic Model for Patients with Locally Advanced Squamous Cell Carcinoma of the Head and Neck Based on Radiomics of Computed Tomography Images.

head and neck cancer machine learning precision medicine radiomics survival study

Journal

Cancers
ISSN: 2072-6694
Titre abrégé: Cancers (Basel)
Pays: Switzerland
ID NLM: 101526829

Informations de publication

Date de publication:
29 Jun 2021
Historique:
received: 13 05 2021
revised: 15 06 2021
accepted: 23 06 2021
entrez: 2 7 2021
pubmed: 3 7 2021
medline: 3 7 2021
Statut: epublish

Résumé

Locoregionally advanced head and neck squamous cell carcinoma (HNSCC) patients have high relapse and mortality rates. Imaging-based decision support may improve outcomes by optimising personalised treatment, and support patient risk stratification. We propose a multifactorial prognostic model including radiomics features to improve risk stratification for advanced HNSCC, compared to TNM eighth edition, the gold standard. Data of 666 retrospective- and 143 prospective-stage III-IVA/B HNSCC patients were collected. A multivariable Cox proportional-hazards model was trained to predict overall survival (OS) using diagnostic CT-based radiomics features extracted from the primary tumour. Separate analyses were performed using TNM8, tumour volume, clinical and biological variables, and combinations thereof with radiomics features. Patient risk stratification in three groups was assessed through Kaplan-Meier (KM) curves. A log-rank test was performed for significance ( A model combining an 11-feature radiomics signature, clinical and biological variables, TNM8, and volume could significantly stratify the validation cohort into three risk groups ( A combination of radiomics features with other predictors can predict OS very accurately for advanced HNSCC patients and improves on the current gold standard of TNM8.

Sections du résumé

BACKGROUND BACKGROUND
Locoregionally advanced head and neck squamous cell carcinoma (HNSCC) patients have high relapse and mortality rates. Imaging-based decision support may improve outcomes by optimising personalised treatment, and support patient risk stratification. We propose a multifactorial prognostic model including radiomics features to improve risk stratification for advanced HNSCC, compared to TNM eighth edition, the gold standard.
PATIENT AND METHODS METHODS
Data of 666 retrospective- and 143 prospective-stage III-IVA/B HNSCC patients were collected. A multivariable Cox proportional-hazards model was trained to predict overall survival (OS) using diagnostic CT-based radiomics features extracted from the primary tumour. Separate analyses were performed using TNM8, tumour volume, clinical and biological variables, and combinations thereof with radiomics features. Patient risk stratification in three groups was assessed through Kaplan-Meier (KM) curves. A log-rank test was performed for significance (
RESULTS RESULTS
A model combining an 11-feature radiomics signature, clinical and biological variables, TNM8, and volume could significantly stratify the validation cohort into three risk groups (
CONCLUSION CONCLUSIONS
A combination of radiomics features with other predictors can predict OS very accurately for advanced HNSCC patients and improves on the current gold standard of TNM8.

Identifiants

pubmed: 34210048
pii: cancers13133271
doi: 10.3390/cancers13133271
pmc: PMC8269129
pii:
doi:

Types de publication

Journal Article

Langues

eng

Subventions

Organisme : Horizon 2020
ID : 689715

Références

Radiat Oncol. 2019 Jul 29;14(1):131
pubmed: 31358029
Oral Oncol. 2019 Dec;99:104441
pubmed: 31689639
Oral Oncol. 2021 Jan;112:105083
pubmed: 33189001
Int J Radiat Oncol Biol Phys. 2017 Nov 15;99(4):921-928
pubmed: 28807534
Front Oncol. 2019 Aug 30;9:821
pubmed: 31544063
Int J Radiat Oncol Biol Phys. 2007 Jul 1;68(3):763-70
pubmed: 17379435
CA Cancer J Clin. 2018 Nov;68(6):394-424
pubmed: 30207593
J Med Internet Res. 2021 Jul 12;23(7):e26151
pubmed: 34255661
JCO Clin Cancer Inform. 2019 Feb;3:1-9
pubmed: 30730765
Aging (Albany NY). 2020 Jul 16;12(14):14593-14619
pubmed: 32674074
Oral Oncol. 2011 Dec;47(12):1154-8
pubmed: 21873105
CA Cancer J Clin. 2017 Mar;67(2):122-137
pubmed: 28128848
Cancer Imaging. 2021 May 26;21(1):38
pubmed: 34039403
Biomed Res Int. 2020 Aug 08;2020:4340521
pubmed: 32851071
Radiol Imaging Cancer. 2020 May 15;2(3):e190039
pubmed: 32550599
BMC Med Res Methodol. 2013 Mar 06;13:33
pubmed: 23496923
Eur J Cancer B Oral Oncol. 1996 Mar;32B(2):83-90
pubmed: 8736169
Sci Rep. 2019 Aug 28;9(1):12483
pubmed: 31462719
Am Soc Clin Oncol Educ Book. 2018 May 23;38:505-514
pubmed: 30231400
Comput Methods Programs Biomed. 2019 Jan;168:21-37
pubmed: 30527130
World J Otorhinolaryngol Head Neck Surg. 2016 Jun;2(2):60-67
pubmed: 28642939
Radiat Oncol. 2010 Mar 15;5:21
pubmed: 20230613
Head Neck. 2021 Feb;43(2):601-612
pubmed: 33107152
Carcinogenesis. 2000 Mar;21(3):497-503
pubmed: 10688870
Strahlenther Onkol. 2019 Sep;195(9):805-818
pubmed: 31222468
J Clin Oncol. 1991 Jan;9(1):191-2
pubmed: 1985169
Oral Oncol. 2017 Aug;71:150-155
pubmed: 28688683
Oral Oncol. 2019 Aug;95:178-186
pubmed: 31345388
Radiology. 2020 May;295(2):328-338
pubmed: 32154773
Cancers (Basel). 2020 Oct 19;12(10):
pubmed: 33086761
Bioinformatics. 2012 Jan 1;28(1):112-8
pubmed: 22039212
Diagnostics (Basel). 2021 Mar 25;11(4):
pubmed: 33806029
Cancer Imaging. 2019 Oct 16;19(1):66
pubmed: 31619297
Sci Rep. 2017 Aug 31;7(1):10117
pubmed: 28860628
EBioMedicine. 2019 Jul;45:70-80
pubmed: 31255659
Cancer Res. 1990 Oct 1;50(19):6130-8
pubmed: 1698118
Br J Radiol. 2020 May 01;93(1109):20190857
pubmed: 32101463
Sci Rep. 2020 Aug 25;10(1):14163
pubmed: 32843663
Cancer Res. 2017 Nov 1;77(21):e104-e107
pubmed: 29092951
J Oncol. 2012;2012:571862
pubmed: 22315596
Nat Commun. 2014 Jun 03;5:4006
pubmed: 24892406
Radiother Oncol. 2019 Jan;130:2-9
pubmed: 30416044
Ann Intern Med. 2015 May 19;162(10):735-6
pubmed: 25984857
Am J Epidemiol. 2009 Oct 15;170(8):937-47
pubmed: 19745021
Int J Radiat Oncol Biol Phys. 2006 Feb 1;64(2):435-48
pubmed: 16198064
Sci Rep. 2019 Oct 23;9(1):15198
pubmed: 31645603
Cancer Imaging. 2020 Nov 11;20(1):81
pubmed: 33176885
Semin Radiat Oncol. 2012 Jul;22(3):194-7
pubmed: 22687943
Cancers (Basel). 2020 Jul 03;12(7):
pubmed: 32635216
EBioMedicine. 2019 Jun;44:289-297
pubmed: 31129097
Radiother Oncol. 2018 Jun;127(3):349-360
pubmed: 29779918
Sci Rep. 2018 Jan 24;8(1):1524
pubmed: 29367653
Nat Rev Clin Oncol. 2017 Dec;14(12):749-762
pubmed: 28975929
Quant Imaging Med Surg. 2019 Jul;9(7):1288-1302
pubmed: 31448214

Auteurs

Simon A Keek (SA)

The D-Lab, Department of Precision Medicine, GROW-School for Oncology, Maastricht University, Maastricht, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands.

Frederik W R Wesseling (FWR)

Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Postbus 3035, 6202 NA Maastricht, The Netherlands.

Henry C Woodruff (HC)

The D-Lab, Department of Precision Medicine, GROW-School for Oncology, Maastricht University, Maastricht, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands.
Department of Radiology and Nuclear Medicine, GROW-School for Oncology, Maastricht University Medical Centre+, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands.

Janita E van Timmeren (JE)

Department of Radiation Oncology, University Hospital Zürich, University of Zürich, Rämistrasse 100, 8091 Zürich, Switzerland.

Irene H Nauta (IH)

Amsterdam UMC, Otolaryngology/Head and Neck Surgery, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Postbus 7057, 1007 MB Amsterdam, The Netherlands.

Thomas K Hoffmann (TK)

Department of Otorhinolaryngology, Head Neck Surgery, i2SOUL Consortium, University of Ulm, Frauensteige 14a (Haus 18), 89075 Ulm, Germany.

Stefano Cavalieri (S)

Head and Neck Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, via Giacomo Venezian, University of Milan, 1 20133 Milano, Italy.

Giuseppina Calareso (G)

Radiology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori via Giacomo Venezian, 1 20133 Milano, Italy.

Sergey Primakov (S)

The D-Lab, Department of Precision Medicine, GROW-School for Oncology, Maastricht University, Maastricht, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands.

Ralph T H Leijenaar (RTH)

Oncoradiomics SA, Liège, Clos Chanmurly 13, 4000 Liège, Belgium.

Lisa Licitra (L)

Head and Neck Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, via Giacomo Venezian, University of Milan, 1 20133 Milano, Italy.
Department of Oncology and Hemato-Oncology, University of Milan, via S. Sofia 9/1, 20122 Milano, Italy.

Marco Ravanelli (M)

Department of Medicine and Surgery, University of Brescia, Viale Europa, 11-25123 Brescia, Italy.

Kathrin Scheckenbach (K)

Department. of Otorhinolaryngology-Head and Neck Surgery, University Hospital Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany.

Tito Poli (T)

Maxillofacial Surgery Unit, Department of Medicine and Surgery, University of Parma-University Hospital of Parma, via Università, 12-I, 43121 Parma, Italy.

Davide Lanfranco (D)

Maxillofacial Surgery Unit, Department of Medicine and Surgery, University of Parma-University Hospital of Parma, via Università, 12-I, 43121 Parma, Italy.

Marije R Vergeer (MR)

Amsterdam UMC, Cancer Center Amsterdam, Department of Radiation Oncology, Vrije Universiteit Amsterdam, Postbus 7057, 1007 MB Amsterdam, The Netherlands.

C René Leemans (CR)

Amsterdam UMC, Otolaryngology/Head and Neck Surgery, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Postbus 7057, 1007 MB Amsterdam, The Netherlands.

Ruud H Brakenhoff (RH)

Amsterdam UMC, Otolaryngology/Head and Neck Surgery, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Postbus 7057, 1007 MB Amsterdam, The Netherlands.

Frank J P Hoebers (FJP)

Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Postbus 3035, 6202 NA Maastricht, The Netherlands.

Philippe Lambin (P)

The D-Lab, Department of Precision Medicine, GROW-School for Oncology, Maastricht University, Maastricht, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands.
Department of Radiology and Nuclear Medicine, GROW-School for Oncology, Maastricht University Medical Centre+, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands.

Classifications MeSH