A Metabolic Choreography of Maize Plants Treated with a Humic Substance-Based Biostimulant under Normal and Starved Conditions.

abiotic stresses biostimulants humic substances metabolomics molecular networking

Journal

Metabolites
ISSN: 2218-1989
Titre abrégé: Metabolites
Pays: Switzerland
ID NLM: 101578790

Informations de publication

Date de publication:
20 Jun 2021
Historique:
received: 23 05 2021
revised: 08 06 2021
accepted: 15 06 2021
entrez: 2 7 2021
pubmed: 3 7 2021
medline: 3 7 2021
Statut: epublish

Résumé

Humic substance (HS)-based biostimulants show potentials as sustainable strategies for improved crop development and stress resilience. However, cellular and molecular mechanisms governing the agronomically observed effects of HS on plants remain enigmatic. Here, we report a global metabolic reprogramming of maize leaves induced by a humic biostimulant under normal and nutrient starvation conditions. This reconfiguration of the maize metabolism spanned chemical constellations, as revealed by molecular networking approaches. Plant growth and development under normal conditions were characterized by key differential metabolic changes such as increased levels of amino acids, oxylipins and the tricarboxylic acid (TCA) intermediate, isocitric acid. Furthermore, under starvation, the humic biostimulant significantly impacted pathways that are involved in stress-alleviating mechanisms such as redox homeostasis, strengthening of the plant cell wall, osmoregulation, energy production and membrane remodelling. Thus, this study reveals that the humic biostimulant induces a remodelling of inter-compartmental metabolic networks in maize, subsequently readjusting the plant physiology towards growth promotion and stress alleviation. Such insights contribute to ongoing efforts in elucidating modes of action of biostimulants, generating fundamental scientific knowledge that is necessary for development of the biostimulant industry, for sustainable food security.

Identifiants

pubmed: 34202973
pii: metabo11060403
doi: 10.3390/metabo11060403
pmc: PMC8235525
pii:
doi:

Types de publication

Journal Article

Langues

eng

Références

Nat Protoc. 2020 Jun;15(6):1954-1991
pubmed: 32405051
Front Plant Sci. 2018 Mar 13;9:263
pubmed: 29593751
Front Plant Sci. 2019 Apr 16;10:494
pubmed: 31057591
Biochemistry (Mosc). 2014 Apr;79(4):362-75
pubmed: 24910209
Nat Methods. 2020 Sep;17(9):905-908
pubmed: 32839597
Metabolomics. 2016;12:125
pubmed: 27471437
J Chem Ecol. 2010 Jun;36(6):662-9
pubmed: 20480387
Front Plant Sci. 2020 Jun 19;11:928
pubmed: 32636870
Plants (Basel). 2020 Dec 25;10(1):
pubmed: 33375667
Front Plant Sci. 2020 Feb 04;11:40
pubmed: 32117379
Plant Physiol. 2015 May;168(1):74-93
pubmed: 25810096
Metabolites. 2020 Apr 24;10(4):
pubmed: 32344578
Bioinformatics. 2015 Aug 15;31(16):2757-60
pubmed: 25847005
Nat Methods. 2015 Jun;12(6):523-6
pubmed: 25938372
Metabolomics. 2007 Sep;3(3):211-221
pubmed: 24039616
Plant Methods. 2010 Jan 29;6:6
pubmed: 20181048
Sci Rep. 2019 Feb 20;9(1):2370
pubmed: 30787347
Front Plant Sci. 2019 Jan 04;9:1840
pubmed: 30662445
Crit Rev Anal Chem. 2017 Jul 4;47(4):325-331
pubmed: 28631936
Adv Bioinformatics. 2010;:268925
pubmed: 21331364
J Plant Physiol. 2010 May 15;167(8):633-42
pubmed: 20185204
Int J Mol Sci. 2015 Nov 04;16(11):26378-94
pubmed: 26556338
Front Plant Sci. 2019 May 03;10:493
pubmed: 31130970
Cell Mol Life Sci. 2012 Oct;69(19):3225-43
pubmed: 22885821
New Phytol. 2017 Nov;216(3):868-881
pubmed: 28833172
Plant Signal Behav. 2010 Jun;5(6):635-43
pubmed: 20495384
Front Plant Sci. 2016 May 04;7:571
pubmed: 27200044
Trends Plant Sci. 2014 Sep;19(9):564-9
pubmed: 24999240
Trends Pharmacol Sci. 2017 Feb;38(2):143-154
pubmed: 27842887
Acta Pharmacol Sin. 2014 May;35(5):567-84
pubmed: 24786231
BMC Bioinformatics. 2012 May 16;13:99
pubmed: 22591066
Int J Mol Sci. 2010 Nov 15;11(11):4539-55
pubmed: 21151455
Metabolites. 2016 Nov 03;6(4):
pubmed: 27827887
Annu Rev Plant Biol. 2018 Apr 29;69:363-386
pubmed: 29166128
Metabolites. 2020 Dec 10;10(12):
pubmed: 33321781
Sci Rep. 2020 Jan 10;10(1):138
pubmed: 31924833
Sci Rep. 2017 Aug 11;7(1):7937
pubmed: 28801632
Front Plant Sci. 2019 May 22;10:675
pubmed: 31178884
Front Plant Sci. 2017 Jan 26;7:2049
pubmed: 28184225
Mol Plant. 2015 Nov 2;8(11):1563-79
pubmed: 26384576
Plant Signal Behav. 2011 Feb;6(2):192-5
pubmed: 21512320
Expert Rev Proteomics. 2020 Apr;17(4):243-255
pubmed: 32380880
Comput Struct Biotechnol J. 2013 Feb 06;4:e201301003
pubmed: 24688685
Front Plant Sci. 2021 Jun 03;12:676632
pubmed: 34149776

Auteurs

Kgalaletso Othibeng (K)

Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa.

Lerato Nephali (L)

Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa.

Anza-Tshilidzi Ramabulana (AT)

Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa.

Paul Steenkamp (P)

Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa.

Daniel Petras (D)

CMFI Cluster of Excellence, Interfaculty Institute of Microbiology and Medicine, University of Tubingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.

Kyo Bin Kang (KB)

College of Pharmacy, Sookmyung Women's University, Seoul 04310, Korea.

Hugo Opperman (H)

International Research and Development Division, Omnia Group, Ltd., Bryanston, Johannesburg 2021, South Africa.

Johan Huyser (J)

International Research and Development Division, Omnia Group, Ltd., Bryanston, Johannesburg 2021, South Africa.

Fidele Tugizimana (F)

Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa.
International Research and Development Division, Omnia Group, Ltd., Bryanston, Johannesburg 2021, South Africa.

Classifications MeSH