Ridgecrest aftershocks at Coso suppressed by thermal destressing.
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
07 2021
07 2021
Historique:
received:
28
06
2020
accepted:
30
04
2021
entrez:
1
7
2021
pubmed:
2
7
2021
medline:
2
7
2021
Statut:
ppublish
Résumé
Geothermal and volcanic areas are prone to earthquake triggering
Identifiants
pubmed: 34194023
doi: 10.1038/s41586-021-03601-4
pii: 10.1038/s41586-021-03601-4
doi:
Types de publication
Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
70-74Références
Zang, A. et al. Analysis of induced seismicity in geothermal reservoirs – an overview. Geothermics 52, 6–21 (2014).
doi: 10.1016/j.geothermics.2014.06.005
Kim, K.-H. et al. Assessing whether the 2017 M
pubmed: 29700224
doi: 10.1126/science.aat6081
Ross, Z. E. et al. Hierarchical interlocked orthogonal faulting in the 2019 Ridgecrest earthquake sequence. Science 366, 346–351 (2019).
pubmed: 31624209
doi: 10.1126/science.aaz0109
Hardebeck, J. L. A stress-similarity triggering model for aftershocks of the M
Chen, K. et al. Cascading and pulse-like ruptures during the 2019 Ridgecrest earthquakes in the Eastern California Shear Zone. Nat. Commun. 11, 22 (2020).
pubmed: 31911581
pmcid: 6946662
doi: 10.1038/s41467-019-13750-w
Hill, D. P. et al. Seismicity remotely triggered by the magnitude 7.3 Landers, California, earthquake. Science 260, 1617–1623 (1993).
pubmed: 17810202
doi: 10.1126/science.260.5114.1617
Grigoli, F. et al. The November 2017 M
pubmed: 29700226
doi: 10.1126/science.aat2010
Deichmann, N. & Giardini, D. Earthquakes induced by the stimulation of an enhanced geothermal system below Basel (Switzerland). Seismol. Res. Lett. 80, 784–798 (2009).
doi: 10.1785/gssrl.80.5.784
Hauksson, E. & Unruh, J. Regional tectonics of the Coso geothermal area along the intracontinental plate boundary in central eastern California: three-dimensional V
doi: 10.1029/2006JB004721
Hauksson, E., Yang, W. & Shearer, P. M. Waveform relocated earthquake catalog for Southern California (1981 to June 2011). Bull. Seismol. Soc. Am. 102, 2239–2244 (2012).
doi: 10.1785/0120120010
Kaven, J. O. Seismicity rate change at the Coso geothermal field following the July 2019 Ridgecrest earthquakes. Bull. Seismol. Soc. Am. 110, 1728–1735 (2020).
doi: 10.1785/0120200017
Blake, K. et al. Updated shallow temperature survey and resource evolution for the Coso geothermal field. In Proc. World Geotherm. Congr. (2020).
Bertani, R. World geothermal power generation in the period 2001–2005. Geothermics 34, 651–690 (2005).
doi: 10.1016/j.geothermics.2005.09.005
Fialko, Y. & Simons, M. Deformation and seismicity in the Coso geothermal area, Inyo County, California: observations and modeling using satellite radar interferometry. J. Geophys. Res. Solid Earth 105, 21781–21793 (2000).
doi: 10.1029/2000JB900169
Reinisch, E. C., Cardiff, M., Kreemer, C., Akerley, J. & Feigl, K. L. Time-series analysis of volume change at Brady Hot Springs, Nevada, USA, using geodetic data from 2003–2018. J. Geophys. Res. Solid Earth 125, B017816 (2020).
doi: 10.1029/2019JB017816
Wicks, C. W., Thatcher, W., Monastero, F. C. & Hasting, M. A. Steady state deformation of the Coso Range, east central California, inferred from satellite radar interferometry. J. Geophys. Res. Solid Earth 106, 13769–13780 (2001).
doi: 10.1029/2001JB000298
Blankenship, D. A. et al. Frontier Observatory for Research in Geothermal Energy: Phase 1 Topical Report West Flank of Coso, CA. Report No. 1455367, https://doi.org/10.2172/1455367 (US Department of Energy, 2016).
Goebel, T. H. W. & Brodsky, E. E. The spatial footprint of injection wells in a global compilation of induced earthquake sequences. Science 361, 899–904 (2018).
pubmed: 30166486
doi: 10.1126/science.aat5449
Goebel, T. H. W., Weingarten, M., Chen, X., Haffener, J. & Brodsky, E. E. The 2016 M
doi: 10.1016/j.epsl.2017.05.011
Sanyal, S., Menzies, A., Granados, E., Sugine, S. & Gentner, R. Long term testing of geothermal wells in the Coso hot springs KGRA. In Proc. 12th Work. Geotherm. Reserv. Eng. 37–44 (1987).
Im, K., Elsworth, D., Guglielmi, Y. & Mattioli, G. S. Geodetic imaging of thermal deformation in geothermal reservoirs - production, depletion and fault reactivation. J. Volcanol. Geotherm. Res. 338, 79–91 (2017).
doi: 10.1016/j.jvolgeores.2017.03.021
Rutqvist, J., Wu, Y.-S., Tsang, C.-F. & Bodvarsson, G. A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock. Int. J. Rock Mech. Min. Sci. 39, 429–442 (2002).
doi: 10.1016/S1365-1609(02)00022-9
Segall, P. & Fitzgerald, S. D. A note on induced stress changes in hydrocarbon and geothermal reservoirs. Tectonophysics 289, 117–128 (1998).
doi: 10.1016/S0040-1951(97)00311-9
Yang, W., Hauksson, E. & Shearer, P. M. Computing a large refined catalog of focal mechanisms for southern California (1981–2010): temporal stability of the style of faulting. Bull. Seismol. Soc. Am. 102, 1179–1194 (2012).
doi: 10.1785/0120110311
Taron, J., Elsworth, D. & Min, K.-B. Numerical simulation of thermal-hydrologic-mechanical-chemical processes in deformable, fractured porous media. Int. J. Rock Mech. Min. Sci. 46, 842–854 (2009).
doi: 10.1016/j.ijrmms.2009.01.008
Feng, Q. & Lees, J. M. Microseismicity, stress, and fracture in the Coso geothermal field, California. Tectonophysics 289, 221–238 (1998).
doi: 10.1016/S0040-1951(97)00317-X
Davatzes, N. C. & Hickman, S. H. Stress and Faulting in the Coso Geothermal Field: Update and Recent Results from the East Flank and Coso Wash. In Proc. 31st Work. Geotherm. Reserv. Eng. (2006).
Rose, P. et al. An enhanced geothermal system at Coso, California — recent accomplishments. In Proc. World Geotherm. Congr. (2005).
Cooper, H. W. & Simmons, G. The effect of cracks on the thermal expansion of rocks. Earth Planet. Sci. Lett. 36, 404–412 (1977).
doi: 10.1016/0012-821X(77)90065-6
Spane, F. Jr. Hydrogeologic Investigation of Coso Hot Springs, Inyo County, California. Report No. 6025, https://www.ekcrcd.org/files/bcdf564af/Hydrogeologic+Investigation+of+Coso+Hot+Springs.pdf (Naval Weapons Center, 1978).
MHA Environmental Consulting. Coso Operating Company Hay Ranch Water Extraction and Delivery System. Conditional Use Permit (CUP 2007-003) Application. Report No. SCH 2007101002, https://www.inyowater.org/wp-content/uploads/legacy/INDEX_DOCS/Coso%20Hay%20Ranch_FEIR_Dec_30_08.pdf (2008).
Zarrouk, S. J. & Moon, H. Efficiency of geothermal power plants: a worldwide review. Geothermics 51, 142–153 (2014).
doi: 10.1016/j.geothermics.2013.11.001
Ali, S. T. et al. Geodetic measurements and numerical models of deformation: examples from geothermal fields in the western United States. In Proc. 41st Work. Geotherm. Reserv. Eng. (2016).
Wang, K. & Bürgmann, R. Co‐ and early postseismic deformation due to the 2019 Ridgecrest earthquake sequence constrained by Sentinel‐1 and COSMO‐SkyMed SAR data. Seismol. Res. Lett. 91, 1998–2009 (2020).
doi: 10.1785/0220190299
Reinisch, E. C., Ali, S. T., Cardiff, M., Kaven, J. O. & Feigl, K. L. Geodetic measurements and numerical models of deformation at Coso geothermal field, California, 2004–2016. Remote Sens. 12, 225 (2020).
doi: 10.3390/rs12020225
Ader, T. J., Lapusta, N., Avouac, J.-P. & Ampuero, J.-P. Response of rate-and-state seismogenic faults to harmonic shear-stress perturbations. Geophys. J. Int. 198, 385–413 (2014).
doi: 10.1093/gji/ggu144
Dieterich, J. A constitutive law for rate of earthquake production and its application to earthquake clustering. J. Geophys. Res. Solid Earth 99, 2601–2618 (1994).
doi: 10.1029/93JB02581
Zhang, Q. et al. Absence of remote earthquake triggering within the Coso and Salton Sea geothermal production fields. Geophys. Res. Lett. 44, 726–733 (2017).
doi: 10.1002/2016GL071964
Alfaro-Diaz, R., Velasco, A. A., Pankow, K. L. & Kilb, D. Optimally oriented remote triggering in the Coso geothermal region. J. Geophys. Res. Solid Earth 125, B019131 (2020).
doi: 10.1029/2019JB019131
Hauksson, E. & Jones, L. M. Seismicity, stress state, and style of faulting of the Ridgecrest‐Coso region from the 1930s to 2019: seismotectonics of an evolving plate boundary segment. Bull. Seismol. Soc. Am. 110, 1457–1473 (2020).
Kostrov, V. Seismic moment and energy of earthquakes, and seismic flow of rock. Izv. Acad. Sci. USSR Phys. Solid Earth 1, 23–44 (1974).
Cornet, F. H., Helm, J., Poitrenaud, H. & Etchecopar, A. Seismic and aseismic slips induced by large-scale fluid injections. Pure Appl. Geophys. 150, 563–583 (1997).
doi: 10.1007/s000240050093
Guglielmi, Y., Cappa, F., Avouac, J.-P., Henry, P. & Elsworth, D. Seismicity triggered by fluid injection-induced aseismic slip. Science 348, 1224–1226 (2015).
pubmed: 26068845
doi: 10.1126/science.aab0476
Wei, S. et al. The 2012 Brawley swarm triggered by injection-induced aseismic slip. Earth Planet. Sci. Lett. 422, 115–125 (2015).
doi: 10.1016/j.epsl.2015.03.054
Cappa, F., Scuderi, M. M., Collettini, C., Guglielmi, Y. & Avouac, J.-P. Stabilization of fault slip by fluid injection in the laboratory and in situ. Sci. Adv. 5, eaau4065 (2019).
pubmed: 30891493
pmcid: 6415952
doi: 10.1126/sciadv.aau4065
Kwiatek, G. et al. Controlling fluid-induced seismicity during a 6.1-km-deep geothermal stimulation in Finland. Sci. Adv. 5, eaav7224 (2019).
pubmed: 31049397
pmcid: 6494490
doi: 10.1126/sciadv.aav7224
Hillers, G. et al. Noise-based monitoring and imaging of aseismic transient deformation induced by the 2006 Basel reservoir stimulation. Geophysics 80, KS51–KS68 (2015).
doi: 10.1190/geo2014-0455.1
Häring, M. O., Schanz, U., Ladner, F. & Dyer, B. C. Characterisation of the Basel 1 enhanced geothermal system. Geothermics 37, 469–495 (2008).
doi: 10.1016/j.geothermics.2008.06.002
Gan, Q. & Elsworth, D. Thermal drawdown and late-stage seismic-slip fault reactivation in enhanced geothermal reservoirs. J. Geophys. Res. Solid Earth 119, 8936–8949 (2014).
doi: 10.1002/2014JB011323
Eshelby, J. D. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. Ser. A. 241, 376–396 (1957)
doi: 10.1098/rspa.1957.0133
Peaceman, D. W. Interpretation of well-block pressures in numerical reservoir simulation with nonsquare grid blocks and anisotropic permeability. Soc. Pet. Eng. J. 23, 531–543 (1983).
doi: 10.2118/10528-PA
Cappa, F. & Rutqvist, J. Modeling of coupled deformation and permeability evolution during fault reactivation induced by deep underground injection of CO
doi: 10.1016/j.ijggc.2010.08.005
Frohlich, C. Triangle diagrams: ternary graphs to display similarity and diversity of earthquake focal mechanisms. Phys. Earth Planet. Inter. 75, 193–198 (1992).
doi: 10.1016/0031-9201(92)90130-N