Dopaminergic and serotonergic changes in rabbit fetal brain upon repeated gestational exposure to diesel engine exhaust.


Journal

Archives of toxicology
ISSN: 1432-0738
Titre abrégé: Arch Toxicol
Pays: Germany
ID NLM: 0417615

Informations de publication

Date de publication:
09 2021
Historique:
received: 26 02 2021
accepted: 17 06 2021
pubmed: 1 7 2021
medline: 8 1 2022
entrez: 30 6 2021
Statut: ppublish

Résumé

Limited studies in humans and in animal models have investigated the neurotoxic risks related to a gestational exposure to diesel exhaust particles (DEP) on the embryonic brain, especially those regarding monoaminergic systems linked to neurocognitive disorders. We previously showed that exposure to DEP alters monoaminergic neurotransmission in fetal olfactory bulbs and modifies tissue morphology along with behavioral consequences at birth in a rabbit model. Given the anatomical and functional connections between olfactory and central brain structures, we further characterized their impacts in brain regions associated with monoaminergic neurotransmission. At gestational day 28 (GD28), fetal rabbit brains were collected from dams exposed by nose-only to either a clean air or filtered DEP for 2 h/day, 5 days/week, from GD3 to GD27. HPLC dosage and histochemical analyses of the main monoaminergic systems, i.e., dopamine (DA), noradrenaline (NA), and serotonin (5-HT) and their metabolites were conducted in microdissected fetal brain regions. DEP exposure increased the level of DA and decreased the dopaminergic metabolites ratios in the prefrontal cortex (PFC), together with sex-specific alterations in the hippocampus (Hp). In addition, HVA level was increased in the temporal cortex (TCx). Serotonin and 5-HIAA levels were decreased in the fetal Hp. However, DEP exposure did not significantly modify NA levels, tyrosine hydroxylase, tryptophan hydroxylase or AChE enzymatic activity in fetal brain. Exposure to DEP during fetal life results in dopaminergic and serotonergic changes in critical brain regions that might lead to detrimental potential short-term neural disturbances as precursors of long-term neurocognitive consequences.

Identifiants

pubmed: 34189592
doi: 10.1007/s00204-021-03110-3
pii: 10.1007/s00204-021-03110-3
doi:

Substances chimiques

Vehicle Emissions 0
Serotonin 333DO1RDJY
Dopamine VTD58H1Z2X
Norepinephrine X4W3ENH1CV

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

3085-3099

Subventions

Organisme : Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail
ID : PNREST 2014/1/190

Informations de copyright

© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Alex KD, Pehek EA (2007) Pharmacologic mechanisms of serotonergic regulation of dopamine neurotransmission. Pharmacol Ther 113:296–320. https://doi.org/10.1016/j.pharmthera.2006.08.004
doi: 10.1016/j.pharmthera.2006.08.004 pubmed: 17049611
Baio J, Wiggins L, Christensen DL, Maenner MJ, Daniels J, Warren Z et al (2018) Prevalence of Autism Spectrum Disorder Among Children Aged 8 Years — Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2014. MMWR Surveill Summ 67(6):1–23. https://doi.org/10.15585/mmwr.ss6706a1
doi: 10.15585/mmwr.ss6706a1 pubmed: 29701730 pmcid: 5919599
Bernal-Meléndez E, Lacroix M, Bouillaud P et al (2019) Repeated gestational exposure to diesel engine exhaust affects the fetal olfactory system and alters olfactory-based behavior in rabbit offspring. Part Fibre Toxicol 16(5):1–17. https://doi.org/10.1186/s12989-018-0288-7
doi: 10.1186/s12989-018-0288-7
Block ML, Wu X, Pei Z et al (2004) Nanometer size diesel exhaust particles are selectively toxic to dopaminergic neurons: the role of microglia, phagocytosis, and NADPH oxidase. FASEB J 18(13):1618–1620. https://doi.org/10.1096/fj.04-1945fje
doi: 10.1096/fj.04-1945fje pubmed: 15319363
Bolton JL, Huff NC, Smith SH et al (2013) Maternal stress and effects of prenatal air pollution on offspring mental health outcomes in mice. Environ Health Perspect 121(9):1075–1082. https://doi.org/10.1289/ehp.1306560
doi: 10.1289/ehp.1306560 pubmed: 23823752 pmcid: 3764088
Bolton JL, Marinero S, Hassanzadeh T et al (2017) Gestational exposure to air pollution alters cortical volume, microglial morphology, and microglia-neuron interactions in a sex-specific manner. Front Synapt Neurosci 9:1–16. https://doi.org/10.3389/fnsyn.2017.00010
doi: 10.3389/fnsyn.2017.00010
Calderón-Garcidueñas L, Solt AC, Henríquez-Roldán C et al (2008a) Long-term air pollution exposure is associated with neuroinflammation, an altered innate immune response, disruption of the blood-brain barrier, ultrafine particulate deposition, and accumulation of amyloid beta-42 and alpha-synuclein in children and young adults. Toxicol Pathol 36(2):289–310. https://doi.org/10.1177/0192623307313011
doi: 10.1177/0192623307313011 pubmed: 18349428
Calderón-Garcidueñas L, Mora-Tiscareño A, Ontiveros E et al (2008b) Air pollution, cognitive deficits and brain abnormalities: a pilot study with children and dogs. Brain Cogn 68(2):117–127. https://doi.org/10.1016/j.bandc.2008.04.008
doi: 10.1016/j.bandc.2008.04.008 pubmed: 18550243
Calderón-Garcidueñas L, Gónzalez-Maciel A, Reynoso-Robles R et al (2018) Hallmarks of Alzheimer disease are evolving relentlessly in Metropolitan Mexico City infants, children and young adults. APOE4 carriers have higher suicide risk and higher odds of reaching NFT stage V at ≤ 40 years of age. Environ Res 164:475–487. https://doi.org/10.1016/j.envres.2018.03.023
doi: 10.1016/j.envres.2018.03.023 pubmed: 29587223
Calderón-Garcidueñas L, Torres-jardón R, Kulesza RJ et al (2020a) Alzheimer disease starts in childhood in polluted Metropolitan Mexico City. A major health crisis in progress. Environ Res. https://doi.org/10.1016/j.envres.2020.109137
doi: 10.1016/j.envres.2020.109137 pubmed: 32890478 pmcid: 7467072
Calderón-Garcidueñas L, Herrera-soto A, Jury N et al (2020b) Reduced repressive epigenetic marks, increased DNA damage and Alzheimer’s disease hallmarks in the brain of humans and mice exposed to particulate urban air pollution. Environ Res 183:109226. https://doi.org/10.1016/j.envres.2020.109226
doi: 10.1016/j.envres.2020.109226 pubmed: 32045727
Cansler HL, Wright KN, Stetzik LA, Wesson DW (2020) Neurochemical organization of the ventral striatum’s olfactory tubercle. J Neurochem. https://doi.org/10.1111/jnc.14919
doi: 10.1111/jnc.14919 pubmed: 31755104 pmcid: 7042089
Cave J, Baker H (2009) Dopamine systems in the forebrain. Adv Exp Med Biol 651:15–35. https://doi.org/10.1007/978-1-4419-0322-8_2
doi: 10.1007/978-1-4419-0322-8_2 pubmed: 19731547 pmcid: 2779115
Chang YC, Daza R, Hevner R et al (2019) Prenatal and early life diesel exhaust exposure disrupts cortical lamina organization: evidence for a reelin-related pathogenic pathway induced by interleukin-6. Brain Behav Immun 78:105–115. https://doi.org/10.1016/j.bbi.2019.01.013
doi: 10.1016/j.bbi.2019.01.013 pubmed: 30668980 pmcid: 6557404
Chavatte-Palmer P, Tarrade A (2016) Placentation in different mammalian species. Annales D’endocrinologie 77(2):67–74. https://doi.org/10.1016/j.ando.2016.04.006
doi: 10.1016/j.ando.2016.04.006 pubmed: 27155775
Chiu YHM, Hsu HHL, Coull BA et al (2016) Prenatal particulate air pollution and neurodevelopment in urban children: Examining sensitive windows and sex-specific associations. Environ Int 87:56–65. https://doi.org/10.1016/j.envint.2015.11.010
doi: 10.1016/j.envint.2015.11.010 pubmed: 26641520
Chung WCJ, Auger AP (2013) Gender differences in neurodevelopment and epigenetics. Pflug Arch/eur Physiol 465:573–584. https://doi.org/10.1007/s00424-013-1258-4
doi: 10.1007/s00424-013-1258-4
Costa LG, Cole TB, Dao K et al (2020) Effects of air pollution on the nervous system and its possible role in neurodevelopmental and neurodegenerative disorders. Pharmacol Ther 107523:1–8. https://doi.org/10.1016/j.pharmthera.2020.107523
doi: 10.1016/j.pharmthera.2020.107523
Di Matteo V, Pierucci M, Esposito E et al (2008) Serotonin modulation of the basal ganglia circuitry: therapeutic implication for Parkinson’s disease and other motor disorders. Prog Brain Res 172(08):423–463. https://doi.org/10.1016/S0079-6123(08)00921-7
doi: 10.1016/S0079-6123(08)00921-7 pubmed: 18772045
Dos Santos CR, Granon S (2012) Prefrontal neuromodulation by nicotinic receptors for cognitive processes. Psychopharmacology 221(1):1–18. https://doi.org/10.1007/s00213-011-2596-6
doi: 10.1007/s00213-011-2596-6
Doty RL (2012) Olfaction in Parkinson’s disease and related disorders. Neurobiol Dis 46(3):527–552. https://doi.org/10.1016/j.nbd.2011.10.026
doi: 10.1016/j.nbd.2011.10.026 pubmed: 22192366
Dumont M, Lalonde R, Ghersi-Egea JF et al (2006) Regional acetylcholinesterase activity and its correlation with behavioral performances in 15-month old transgenic mice expressing the human C99 fragment of APP. J Neural Transm 113(9):1225–1241. https://doi.org/10.1007/s00702-005-0373-6
doi: 10.1007/s00702-005-0373-6 pubmed: 16362638
Ehsanifar M, Jonidi A, Nikzad H et al (2019) Prenatal exposure to diesel exhaust particles causes anxiety, spatial memory disorders with alters expression of hippocampal pro-inflammatory cytokines and NMDA receptor subunits in adult male mice offspring. Ecotoxicol Environ Saf 176:34–41. https://doi.org/10.1016/j.ecoenv.2019.03.090
doi: 10.1016/j.ecoenv.2019.03.090 pubmed: 30921694
Ellman GL, Courtney KD, Andres V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7(2):88–95. https://doi.org/10.1016/0006-2952(61)90145-9
doi: 10.1016/0006-2952(61)90145-9 pubmed: 13726518
Fischer B, Chavatte-Palmer P, Viebahn C et al (2012) Rabbit as a reproductive model for human health. Reproduction 144(1):1–10. https://doi.org/10.1530/REP-12-0091
doi: 10.1530/REP-12-0091 pubmed: 22580370
Gamache P, Ryan E, Svendsen C et al (1993) Simultaneous measurement of monoamines, metabolites and amino acids in brain tissue and microdialysis perfusates. J Chromatogr Biomed Sci Appl 614(2):213–220. https://doi.org/10.1016/0378-4347(93)80311-q
doi: 10.1016/0378-4347(93)80311-q
Gonzalez-Pina R, Escalante-Membrillo C, Alfaro-Rodriguez A, Gonzalez-Maciel A (2008) Prenatal exposure to ozone disrupts cerebellar monoamine contents in newborn rats. Neurochem Res 33(5):912–918. https://doi.org/10.1007/s11064-007-9534-3
doi: 10.1007/s11064-007-9534-3 pubmed: 18030618
Gordon MN, Finch CE (1984) Topochemical localization of choline acetyltransferase and acetylcholinesterase in mouse brain. Brain Res 308(2):364–368. https://doi.org/10.1016/0006-8993(84)91079-5
doi: 10.1016/0006-8993(84)91079-5 pubmed: 6478212
Guxens M, Lubczyńska MJ, Muetzel RL et al (2018) Air pollution exposure during fetal life, brain morphology, and cognitive function in school-age children. Biol Psychiat 84(4):295–303. https://doi.org/10.1016/j.biopsych.2018.01.016
doi: 10.1016/j.biopsych.2018.01.016 pubmed: 29530279
Haghani A, Johnson RG, Woodward NC et al (2020) Adult mouse hippocampal transcriptome changes associated with long-term behavioral and metabolic effects of gestational air pollution toxicity. Transl Psychiatry 10(1):218. https://doi.org/10.1038/s41398-020-00907-1
doi: 10.1038/s41398-020-00907-1 pubmed: 32636363 pmcid: 7341755
Harris MH, Gold DR, Rifas-Shiman SL et al (2016) Prenatal and childhood traffic-related air pollution exposure and childhood executive function and behavior. Neurotoxicol Teratol 57:60–70. https://doi.org/10.1016/j.ntt.2016.06.008
doi: 10.1016/j.ntt.2016.06.008 pubmed: 27350569 pmcid: 5056808
Harvey JD, Heinbockel T (2018) Neuromodulation of synaptic transmission in the main olfactory bulb. Int J Environ Res Public Health 15(10):2194. https://doi.org/10.3390/ijerph15102194
doi: 10.3390/ijerph15102194 pmcid: 6210923
Heusinkveld HJ, Wahle T, Campbell A et al (2016) Neurodegenerative and neurological disorders by small inhaled particles. Neurotoxicology 56:94–106. https://doi.org/10.1016/j.neuro.2016.07.007
doi: 10.1016/j.neuro.2016.07.007 pubmed: 27448464
Höglinger GU, Fischer DA, Carrión OA et al (2015) A new dopaminergic nigro-olfactory projection. Acta Neuropathol 130(3):333–348. https://doi.org/10.1007/s00401-015-1451-y
doi: 10.1007/s00401-015-1451-y pubmed: 26072303
Hougaard KS, Campagnolo L, Chavatte-Palmer P et al (2015) A perspective on the developmental toxicity of inhaled nanoparticles. Reprod Toxicol 56:118–140. https://doi.org/10.1016/j.reprotox.2015.05.015
doi: 10.1016/j.reprotox.2015.05.015 pubmed: 26050605
Kadohisa M (2013) Effects of odor on emotion, with implications. Front Syst Neurosci 10(7):66. https://doi.org/10.3389/fnsys.2013.00066
doi: 10.3389/fnsys.2013.00066
Kema IP, Schellings AMJ, Hoppenbrouwers CJM et al (1993) High performance liquid chromatographic profiling of tryptophan and related indoles in body fluids and tissues of carcinoid patients. Clin Chim Acta 221(1–2):143–158. https://doi.org/10.1016/0009-8981(93)90029-4
doi: 10.1016/0009-8981(93)90029-4 pubmed: 7512001
Klocke C, Allen JL, Sobolewski M et al (2017) Neuropathological consequences of gestational exposure to concentrated ambient fine and ultrafine particles in the mouse. Toxicol Sci 156(2):492–508. https://doi.org/10.1093/toxsci/kfx010
doi: 10.1093/toxsci/kfx010 pubmed: 28087836 pmcid: 6074840
Li W, Lopez L, Osher J et al (2010) Right orbitofrontal cortex mediates conscious olfactory perception. Psychol Sci 21(10):1454–1463. https://doi.org/10.1177/0956797610382121
doi: 10.1177/0956797610382121 pubmed: 20817780
Lizbinski KM, Dacks AM (2018) Intrinsic and extrinsic neuromodulation of olfactory processing. Front Cell Neurosci 11:424. https://doi.org/10.3389/fncel.2017.00424
doi: 10.3389/fncel.2017.00424 pubmed: 29375314 pmcid: 5767172
Lucas G, De Deurwaerde P, Porras G, Spampinato U (2000) Endogenous serotonin enhances the release of dopamine in the striatum only when nigro-striatal dopaminergic transmission is activated. Neuropharmacology 39(11):1984–1995. https://doi.org/10.1016/s0028-3908(00)00020-4
doi: 10.1016/s0028-3908(00)00020-4 pubmed: 10963742
Mundiñano IC, Caballero MC, Ordóñez C et al (2011) Increased dopaminergic cells and protein aggregates in the olfactory bulb of patients with neurodegenerative disorders. Acta Neuropathol 122(1):61–74. https://doi.org/10.1007/s00401-011-0830-2
doi: 10.1007/s00401-011-0830-2 pubmed: 21553300
Nway NC, Fujitani Y, Hirano S et al (2017) Role of TLR4 in olfactory-based spatial learning activity of neonatal mice after developmental exposure to diesel exhaust origin secondary organic aerosol. Neurotoxicology 63:155–165. https://doi.org/10.1016/j.neuro.2017.10.001
doi: 10.1016/j.neuro.2017.10.001 pubmed: 29107071
Patten KT, González EA, Valenzuela A et al (2020) Effects of early life exposure to traffic-related air pollution on brain development in juvenile Sprague-Dawley rats. Transl Psychiatry 10:166–177. https://doi.org/10.1038/s41398-020-0845-3
doi: 10.1038/s41398-020-0845-3 pubmed: 32483143 pmcid: 7264203
Sobolewski M, Anderson T, Conrad K et al (2018) Developmental exposures to ultrafine particle air pollution reduces early testosterone levels and adult male social novelty preference: risk for children’s sex-biased neurobehavioral disorders. Neurotoxicology 68:203–211. https://doi.org/10.1016/j.neuro.2018.08.009
doi: 10.1016/j.neuro.2018.08.009 pubmed: 30144459 pmcid: 6456267
Steinfeld R, Herb JT, Sprengel R et al (2015) Divergent innervation of the olfactory bulb by distinct raphe nuclei. J Comp Neurol 523(5):805–813. https://doi.org/10.1002/cne.23713
doi: 10.1002/cne.23713 pubmed: 25420775 pmcid: 4328392
Suades-González E, Gascon M, Guxens M, Sunyer J (2015) Air pollution and neuropsychological development: a review of the latest evidence. Endocrinology 156(10):3473–3482. https://doi.org/10.1210/en.2015-1403
doi: 10.1210/en.2015-1403 pubmed: 26241071 pmcid: 4588818
Sugamata M, Ihara T, Sugamata M, Takeda K (2006a) Maternal exposure to diesel exhaust leads to pathological similarity to autism in newborns. J Health Sci 52(4):486–488. https://doi.org/10.1248/jhs.52.486
doi: 10.1248/jhs.52.486
Sugamata M, Ihara T, Takano H et al (2006b) Maternal diesel exhaust exposure damages newborn murine brains. J Health Sci 52(1):82–84. https://doi.org/10.1248/jhs.52.82
doi: 10.1248/jhs.52.82
Suzuki T, Oshio S, Iwata M et al (2010) In utero exposure to a low concentration of diesel exhaust affects spontaneous locomotor activity and monoaminergic system in male mice. Part Fibre Toxicol 7(1):7. https://doi.org/10.1186/1743-8977-7-7
doi: 10.1186/1743-8977-7-7 pubmed: 20331848 pmcid: 2853486
Tabatabaie SRF, Mehdiabadi B, Bakhtiari NM, Tabandeh MR (2017) Silver nanoparticle exposure in pregnant rats increases gene expression of tyrosine hydroxylase and monoamine oxidase in offspring brain. Drug Chem Toxicol 40(4):440–447. https://doi.org/10.1080/01480545.2016.1255952
doi: 10.1080/01480545.2016.1255952
Tachibana K, Takayanagi K, Akimoto A et al (2015) Prenatal diesel exhaust exposure disrupts the DNA methylation profile in the brain of mouse offspring. J Toxicol Sci 40(1):1–11. https://doi.org/10.2131/jts.40.1
doi: 10.2131/jts.40.1 pubmed: 25560391
Takahashi Y, Mizuo K, Shinkai Y et al (2010) Prenatal exposure to titanium dioxide nanoparticles increases dopamine levels in the prefrontal cortex and neostriatum of mice. J Toxicol Sci 35(5):749–756. https://doi.org/10.2131/jts.35.749
doi: 10.2131/jts.35.749 pubmed: 20930469
Turano A, Osborne BF, Schwarz JM (2018) Sexual differentiation and sex differences in neural development. Neuroendocr Regul Beh 43:69–110. https://doi.org/10.1007/7854_2018_56
doi: 10.1007/7854_2018_56
Valentino SA, Tarrade A, Aioun J et al (2016) Maternal exposure to diluted diesel engine exhaust alters placental function and induces intergenerational effects in rabbits. Part Fibre Toxicol 13:39. https://doi.org/10.1186/s12989-016-0151-7
doi: 10.1186/s12989-016-0151-7 pubmed: 27460165 pmcid: 4962477
Yokota S, Mizuo K, Moriya N et al (2009) Effect of prenatal exposure to diesel exhaust on dopaminergic system in mice. Neurosci Lett 449(1):38–41. https://doi.org/10.1016/j.neulet.2008.09.085
doi: 10.1016/j.neulet.2008.09.085 pubmed: 18938223
Yokota S, Moriya N, Iwata M et al (2013) Exposure to diesel exhaust during fetal period affects behavior and neurotransmitters in male offspring mice. J Toxicol Sci 38(1):13–23. https://doi.org/10.2131/jts.38.13
doi: 10.2131/jts.38.13 pubmed: 23358136
Yokota S, Sato A, Umezawa M et al (2015) In utero exposure of mice to diesel exhaust particles affects spatial learning and memory with reduced N-methyl-d-aspartate receptor expression in the hippocampus of male offspring. Neurotoxicology 50:108–115. https://doi.org/10.1016/j.neuro.2015.08.009
doi: 10.1016/j.neuro.2015.08.009 pubmed: 26291742
Yokota S, Oshio S, Moriya N, Takeda K (2016a) Social isolation-induced territorial aggression in male offspring is enhanced by exposure to diesel exhaust during pregnancy. PLoS ONE 11(2):1–15. https://doi.org/10.1371/journal.pone.0149737
doi: 10.1371/journal.pone.0149737
Yokota S, Oshio S, Takeda K (2016b) In utero exposure to diesel exhaust particles induces anxiogenic effects on male offspring via chronic activation of serotonergic neuron in dorsal raphe nucleus. J Toxicol Sci 41(5):583–593. https://doi.org/10.2131/jts.41.583
doi: 10.2131/jts.41.583 pubmed: 27665768

Auteurs

Estefania Bernal-Meléndez (E)

NeuroBiologie de l'Olfaction, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
CALBINOTOX, EA7488, Université de Lorraine, Vandœuvre-lès-Nancy, France.

Jacques Callebert (J)

Service de Biochimie et Biologie Moléculaire, Hôpital Lariboisière, Paris, France.

Pascaline Bouillaud (P)

CALBINOTOX, EA7488, Université de Lorraine, Vandœuvre-lès-Nancy, France.

Marie-Annick Persuy (MA)

NeuroBiologie de l'Olfaction, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
Université Paris-Saclay, UVSQ, INRAE, INRAE, BREED UR1198, Bat. 230, Domaine de Vilvert, 78350, Jouy-en-Josas, France.

Benoit Olivier (B)

CALBINOTOX, EA7488, Université de Lorraine, Vandœuvre-lès-Nancy, France.

Karine Badonnel (K)

NeuroBiologie de l'Olfaction, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
Université Paris-Saclay, UVSQ, INRAE, INRAE, BREED UR1198, Bat. 230, Domaine de Vilvert, 78350, Jouy-en-Josas, France.

Pascale Chavatte-Palmer (P)

Université Paris-Saclay, UVSQ, INRAE, INRAE, BREED UR1198, Bat. 230, Domaine de Vilvert, 78350, Jouy-en-Josas, France.

Christine Baly (C)

NeuroBiologie de l'Olfaction, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France. christine.baly@inrae.fr.
Université Paris-Saclay, UVSQ, INRAE, INRAE, BREED UR1198, Bat. 230, Domaine de Vilvert, 78350, Jouy-en-Josas, France. christine.baly@inrae.fr.

Henri Schroeder (H)

CALBINOTOX, EA7488, Université de Lorraine, Vandœuvre-lès-Nancy, France. henri.schroeder@univ-lorraine.fr.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH