Inferring the heritability of large-scale functional networks with a multivariate ACE modeling approach.
Connectome fingerprinting
Functional connectome
Multivariate modeling
Twin study
Journal
Network neuroscience (Cambridge, Mass.)
ISSN: 2472-1751
Titre abrégé: Netw Neurosci
Pays: United States
ID NLM: 101719149
Informations de publication
Date de publication:
2021
2021
Historique:
received:
24
09
2020
accepted:
10
02
2021
entrez:
30
6
2021
pubmed:
1
7
2021
medline:
1
7
2021
Statut:
epublish
Résumé
Recent evidence suggests that the human functional connectome is stable at different timescales and is unique. These characteristics posit the functional connectome not only as an individual marker but also as a powerful discriminatory measure characterized by high intersubject variability. Among distinct sources of intersubject variability, the long-term sources include functional patterns that emerge from genetic factors. Here, we sought to investigate the contribution of additive genetic factors to the variability of functional networks by determining the heritability of the connectivity strength in a multivariate fashion. First, we reproduced and extended the connectome fingerprinting analysis to the identification of twin pairs. Then, we estimated the heritability of functional networks by a multivariate ACE modeling approach with bootstrapping. Twin pairs were identified above chance level using connectome fingerprinting, with monozygotic twin identification accuracy equal to 57.2% on average for whole-brain connectome. Additionally, we found that a visual (0.37), the medial frontal (0.31), and the motor (0.30) functional networks were the most influenced by additive genetic factors. Our findings suggest that genetic factors not only partially determine intersubject variability of the functional connectome, such that twins can be identified using connectome fingerprinting, but also differentially influence connectivity strength in large-scale functional networks.
Identifiants
pubmed: 34189376
doi: 10.1162/netn_a_00189
pii: netn_a_00189
pmc: PMC8233119
doi:
Types de publication
Journal Article
Langues
eng
Pagination
527-548Informations de copyright
© 2021 Massachusetts Institute of Technology.
Références
Nat Neurosci. 2017 Apr;20(4):513-515
pubmed: 28218917
Neuron. 2015 Aug 5;87(3):657-70
pubmed: 26212711
Netw Neurosci. 2018 Jun 01;2(2):175-199
pubmed: 30215032
Proc Natl Acad Sci U S A. 2017 May 23;114(21):5521-5526
pubmed: 28484032
Elife. 2017 Jul 26;6:
pubmed: 28745584
PLoS One. 2016 Jun 20;11(6):e0157443
pubmed: 27322194
Mov Disord. 2018 May;33(5):730-741
pubmed: 29644727
Neuroimage Clin. 2018 Jun 30;20:71-84
pubmed: 30094158
Nat Neurosci. 2001 Dec;4(12):1253-8
pubmed: 11694885
Neuroimage. 2012 Jan 2;59(1):431-8
pubmed: 21810475
Front Neurosci. 2017 Feb 22;11:85
pubmed: 28275335
Neuroimage. 2013 Nov 15;82:403-15
pubmed: 23747961
Cereb Cortex. 2009 Nov;19(11):2728-35
pubmed: 19299253
Neuroimage. 2018 Apr 15;170:5-30
pubmed: 28412442
Trends Cogn Sci. 2016 Jun;20(6):425-443
pubmed: 27138646
Nat Rev Neurosci. 2018 Nov;19(11):672-686
pubmed: 30305712
Neuroimage. 2007 Aug 1;37(1):90-101
pubmed: 17560126
PLoS One. 2014 Nov 11;9(11):e111048
pubmed: 25386919
Neuroimage. 2014 Nov 15;102 Pt 2:424-34
pubmed: 25132021
Neuron. 2013 Feb 6;77(3):586-95
pubmed: 23395382
J Neurosci. 2009 Feb 11;29(6):1860-73
pubmed: 19211893
Cereb Cortex. 2016 May;26(5):2341-2352
pubmed: 26891986
Neuroimage. 2013 Oct 15;80:105-24
pubmed: 23668970
Neuroimage. 2013 Oct 15;80:62-79
pubmed: 23684880
Twin Res Hum Genet. 2019 Feb;22(1):27-41
pubmed: 30944056
Science. 2018 Feb 9;359(6376):693-697
pubmed: 29439242
Nat Neurosci. 2020 Mar;23(3):311-322
pubmed: 32112059
Netw Neurosci. 2019 Feb 01;3(2):363-383
pubmed: 30793087
Brain Connect. 2012;2(3):125-41
pubmed: 22642651
Hum Brain Mapp. 2020 Oct 15;41(15):4187-4199
pubmed: 32652852
Neuroimage. 2019 Dec;203:116157
pubmed: 31494250
Proc Natl Acad Sci U S A. 2021 Mar 2;118(9):
pubmed: 33622790
Nat Commun. 2015 Dec 09;6:8885
pubmed: 26648521
Neuron. 2018 Apr 18;98(2):439-452.e5
pubmed: 29673485
Cereb Cortex. 2016 Jan;26(1):288-303
pubmed: 25316338
iScience. 2020 Jan 24;23(1):100801
pubmed: 31958758
Neuroimage. 2013 Oct 15;80:144-68
pubmed: 23702415
Neuroimage. 2020 Mar;208:116366
pubmed: 31740342
Neuropsychol Rev. 2015 Mar;25(1):63-96
pubmed: 25773500
Nat Commun. 2016 Dec 15;7:13738
pubmed: 27976715
Curr Genomics. 2017 Aug;18(4):332-340
pubmed: 29081689
Cereb Cortex. 2019 Jun 1;29(6):2533-2551
pubmed: 29878084
Cereb Cortex. 2017 Sep 1;27(9):4492-4502
pubmed: 27550863
Netw Neurosci. 2019 Mar 01;3(2):521-538
pubmed: 30984905
Neuroimage. 2017 Sep;158:371-377
pubmed: 28710040
Cereb Cortex. 2019 Jun 1;29(6):2509-2523
pubmed: 29878081
Nat Neurosci. 2015 Nov;18(11):1664-71
pubmed: 26457551
Cereb Cortex. 2017 Nov 1;27(11):5415-5429
pubmed: 28968754
Neuroimage. 2019 Apr 1;189:516-532
pubmed: 30708106
Hum Brain Mapp. 2018 Dec;39(12):4893-4902
pubmed: 30052318
Trends Cogn Sci. 2018 Jun;22(6):517-530
pubmed: 29609894
Nat Neurosci. 2020 Aug;23(8):918-926
pubmed: 32561883
Nat Rev Neurosci. 2019 Jul;20(7):435-446
pubmed: 31127193
Nature. 2016 Aug 11;536(7615):171-178
pubmed: 27437579
J Psychiatr Res. 2019 Jul;114:178-207
pubmed: 31096178
Neuroimage. 2019 Nov 15;202:116073
pubmed: 31386921