COVID-19: biologic and immunosuppressive therapy in gastroenterology and hepatology.


Journal

Nature reviews. Gastroenterology & hepatology
ISSN: 1759-5053
Titre abrégé: Nat Rev Gastroenterol Hepatol
Pays: England
ID NLM: 101500079

Informations de publication

Date de publication:
10 2021
Historique:
accepted: 07 06 2021
pubmed: 1 7 2021
medline: 7 10 2021
entrez: 30 6 2021
Statut: ppublish

Résumé

The coronavirus disease 2019 (COVID-19) pandemic is an ongoing global health crisis causing major challenges for clinical care in patients with gastrointestinal diseases. Although triggering of anti-viral immune responses is essential for clearance of infection, some patients have severe lung inflammation and multiorgan failure due to marked immune cell dysregulation and cytokine storm syndrome. Importantly, the activation of cytotoxic follicular helper T cells and a reduction of regulatory T cells have a crucial, negative prognostic role. These findings lead to the question of whether immunosuppressive and biologic therapies for gastrointestinal diseases affect the incidence or prognosis of COVID-19 and, thus, whether they should be adjusted to prevent or affect the course of the disease. In this Review, data on the use of such therapies are discussed with a primary focus on inflammatory bowel disease, autoimmune hepatitis and liver transplantation. In particular, the roles of corticosteroids, classic immunosuppressive agents (such as thiopurines and mycophenolate mofetil), small molecules (such as Janus kinase (JAK) inhibitors), and biologic agents (such as tumour necrosis factor (TNF) blockers, vedolizumab and ustekinumab) are reviewed. Finally, the use of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines for the prevention of infection in patients with gastrointestinal diseases and concomitant immunosuppressive or biologic therapy will be discussed.

Identifiants

pubmed: 34188251
doi: 10.1038/s41575-021-00480-y
pii: 10.1038/s41575-021-00480-y
pmc: PMC8239481
doi:

Substances chimiques

Biological Factors 0
COVID-19 Vaccines 0
Immunosuppressive Agents 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

705-715

Informations de copyright

© 2021. Springer Nature Limited.

Références

Cobb, N. L. et al. Comparison of clinical features and outcomes in critically ill patients hospitalized with COVID-19 versus influenza. Ann. Am. Thorac. Soc. 18, 632–640 (2021).
pubmed: 33183067 pmcid: 8009008 doi: 10.1513/AnnalsATS.202007-805OC
Bhatraju, P. K. et al. Covid-19 in critically ill patients in the Seattle region — case series. N. Engl. J. Med. 382, 2012–2022 (2020).
pubmed: 32227758 doi: 10.1056/NEJMoa2004500
Wu, F. et al. A new coronavirus associated with human respiratory disease in China. Nature 579, 265–269 (2020).
pubmed: 32015508 pmcid: 7094943 doi: 10.1038/s41586-020-2008-3
Guan, W. J. et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 382, 1708–1720 (2020).
pubmed: 32109013 doi: 10.1056/NEJMoa2002032
Wölfel, R. et al. Virological assessment of hospitalized patients with COVID-19. Nature 581, 465–469 (2020).
pubmed: 32235945 doi: 10.1038/s41586-020-2196-x
Zhou, J. et al. Infection of bat and human intestinal organoids by SARS-CoV-2. Nat. Med. 26, 1077–1083 (2020).
pubmed: 32405028 doi: 10.1038/s41591-020-0912-6
Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 5, 536–544 (2020).
doi: 10.1038/s41564-020-0695-z
Rehman, S. U., Shafique, L., Ihsan, A. & Liu, Q. Evolutionary Trajectory for the Emergence of Novel Coronavirus SARS-CoV-2. Pathogens 9, 240 (2020).
pmcid: 7157669 doi: 10.3390/pathogens9030240
Matsuyama, S. et al. Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells. Proc. Natl Acad. Sci. USA 117, 7001–7003 (2020).
pubmed: 32165541 pmcid: 7132130 doi: 10.1073/pnas.2002589117
De Biasi, S. et al. Marked T cell activation, senescence, exhaustion and skewing towards TH17 in patients with COVID-19 pneumonia. Nat. Commun. 11, 3434 (2020).
pubmed: 32632085 pmcid: 7338513 doi: 10.1038/s41467-020-17292-4
Li, Q. et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N. Engl. J. Med. 382, 1199–1207 (2020).
pubmed: 31995857 pmcid: 7121484 doi: 10.1056/NEJMoa2001316
Shah, H., Khan, M. S. H., Dhurandhar, N. V. & Hegde, V. The triumvirate: why hypertension, obesity, and diabetes are risk factors for adverse effects in patients with COVID-19. Acta Diabetol. 58, 831–843 (2021).
pubmed: 33587177 doi: 10.1007/s00592-020-01636-z pmcid: 7882857
Lu, R. et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395, 565–574 (2020).
pubmed: 32007145 pmcid: 7159086 doi: 10.1016/S0140-6736(20)30251-8
Reynolds, H. R. et al. Renin-angiotensin-aldosterone system inhibitors and risk of Covid-19. N. Engl. J. Med. 382, 2441–2448 (2020).
pubmed: 32356628 doi: 10.1056/NEJMoa2008975
Yan, R. et al. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 367, 1444–1448 (2020).
pubmed: 32132184 pmcid: 7164635 doi: 10.1126/science.abb2762
Zhang, H., Penninger, J. M., Li, Y., Zhong, N. & Slutsky, A. S. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med. 46, 586–590 (2020).
pubmed: 32125455 pmcid: 7079879 doi: 10.1007/s00134-020-05985-9
Hashimoto, T. et al. ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation. Nature 487, 477–481 (2012).
pubmed: 22837003 pmcid: 7095315 doi: 10.1038/nature11228
Byrnes, J. J. et al. Effects of the ACE2 inhibitor GL1001 on acute dextran sodium sulfate-induced colitis in mice. Inflamm. Res. 58, 819–827 (2009).
pubmed: 19517214 doi: 10.1007/s00011-009-0053-3
Hoffmann, M. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181, 271–280 (2020).
pubmed: 32142651 pmcid: 7102627 doi: 10.1016/j.cell.2020.02.052
Guo, Y. R. et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak - an update on the status. Mil. Med. Res. 7, 11 (2020).
pubmed: 32169119 pmcid: 7068984
Redd, W. D. et al. Prevalence and characteristics of gastrointestinal symptoms in patients with severe acute respiratory syndrome coronavirus 2 infection in the United States: a multicenter cohort study. Gastroenterology 159, 765–767 (2020).
pubmed: 32333911 doi: 10.1053/j.gastro.2020.04.045
Pan, L. et al. Clinical characteristics of COVID-19 patients with digestive symptoms in Hubei, China: a descriptive, cross-sectional, multicenter study. Am. J. Gastroenterol. 115, 766–773 (2020).
pubmed: 32287140 doi: 10.14309/ajg.0000000000000620
Dong, Z. Y., Xiang, B. J., Jiang, M., Sun, M. J. & Dai, C. The prevalence of gastrointestinal symptoms, abnormal liver function, digestive system disease and liver disease in COVID-19 infection: a systematic review and meta-analysis. J. Clin. Gastroenterol. 55, 67–76 (2021).
pubmed: 33116063 doi: 10.1097/MCG.0000000000001424
Neurath, M. F. COVID-19 and immunomodulation in IBD. Gut 69, 1335–1342 (2020).
pubmed: 32303609 doi: 10.1136/gutjnl-2020-321269
Grover, S. et al. High prevalence of gastrointestinal manifestations of COVID-19 infection in hospitalized patients with cancer. J. Clin. Gastroenterol. 55, 84–87 (2021).
pubmed: 33116066 doi: 10.1097/MCG.0000000000001462 pmcid: 7718415
Xiao, F. et al. Evidence for gastrointestinal infection of SARS-CoV-2. Gastroenterology 158, 1831–1833 (2020).
pubmed: 32142773 doi: 10.1053/j.gastro.2020.02.055
Patankar, J. V. et al. The SARS-CoV-2 attachment receptor ACE2 is decreased in Crohn’s disease and regulated by microbial and inflammatory signaling. Gastroenterology 160, 925–928 (2021).
pubmed: 33075345 doi: 10.1053/j.gastro.2020.10.021
Lamers, M. M. et al. SARS-CoV-2 productively infects human gut enterocytes. Science 369, 50–54 (2020).
pubmed: 32358202 doi: 10.1126/science.abc1669
Patel, K. P. et al. Gastrointestinal, hepatobiliary, and pancreatic manifestations of COVID-19. J. Clin. Virol. 128, 104386 (2020).
pubmed: 32388469 pmcid: 7189193 doi: 10.1016/j.jcv.2020.104386
Cai, Q. et al. COVID-19: abnormal liver function tests. J. Hepatol 73, 566–574 (2020).
pubmed: 32298767 pmcid: 7194951 doi: 10.1016/j.jhep.2020.04.006
Yadlapati, S. et al. Prevailing patterns of liver enzymes in patients with COVID-19 infection and association with clinical outcomes. Ann. Gastroenterol. 34, 224–228 (2021).
pubmed: 33654363 pmcid: 7903583
Huang, C. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395, 497–506 (2020).
pubmed: 31986264 pmcid: 7159299 doi: 10.1016/S0140-6736(20)30183-5
Mehta, P. et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 395, 1033–1034 (2020).
pubmed: 32192578 pmcid: 7270045 doi: 10.1016/S0140-6736(20)30628-0
Sadeghi, A. et al. Th17 and Treg cells function in SARS-CoV2 patients compared with healthy controls. J. Cell. Physiol. 236, 2829–2839 (2021).
pubmed: 32926425 doi: 10.1002/jcp.30047
Parrot, T. et al. MAIT cell activation and dynamics associated with COVID-19 disease severity. Sci. Immunol. 5, eabe1670 (2020).
pubmed: 32989174 pmcid: 7857393 doi: 10.1126/sciimmunol.abe1670
Remy, K. E. et al. Severe immunosuppression and not a cytokine storm characterizes COVID-19 infections. JCI Insight 5, e140329 (2020).
pmcid: 7526441 doi: 10.1172/jci.insight.140329
Leppkes, M. et al. Vascular occlusion by neutrophil extracellular traps in COVID-19. EBioMedicine 58, 102925 (2020).
pubmed: 32745993 pmcid: 7397705 doi: 10.1016/j.ebiom.2020.102925
Schurink, B. et al. Viral presence and immunopathology in patients with lethal COVID-19: a prospective autopsy cohort study. Lancet Microbe 1, e290–e299 (2020).
pubmed: 33015653 pmcid: 7518879 doi: 10.1016/S2666-5247(20)30144-0
Lipsitch, M., Grad, Y. H., Sette, A. & Crotty, S. Cross-reactive memory T cells and herd immunity to SARS-CoV-2. Nat. Rev. Immunol. 20, 709–713 (2020).
pubmed: 33024281 doi: 10.1038/s41577-020-00460-4
Chiotos, K. et al. Multicenter interim guidance on use of antivirals for children with coronavirus disease 2019/severe acute respiratory syndrome coronavirus 2. J. Pediatric Infect. Dis. Soc. 10, 34–48 (2021).
pubmed: 32918548 doi: 10.1093/jpids/piaa115
Harwood, R. et al. A national consensus management pathway for paediatric inflammatory multisystem syndrome temporally associated with COVID-19 (PIMS-TS): results of a national Delphi process. Lancet Child Adolesc. Health 5, 133–141 (2021).
pubmed: 32956615 doi: 10.1016/S2352-4642(20)30304-7
Sekine, T. et al. Robust T cell immunity in convalescent individuals with asymptomatic or mild COVID-19. Cell 183, 158–68 (2020).
pubmed: 32979941 pmcid: 7427556 doi: 10.1016/j.cell.2020.08.017
Swadling, L. & Maini, M. K. T cells in COVID-19 - united in diversity. Nat. Immunol. 21, 1307–1308 (2020).
pubmed: 32895541 doi: 10.1038/s41590-020-0798-y
Grifoni, A. et al. Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell 181, 1489–1501 (2020).
pubmed: 32473127 pmcid: 7237901 doi: 10.1016/j.cell.2020.05.015
Zhang, J. Y. et al. Single-cell landscape of immunological responses in patients with COVID-19. Nat. Immunol. 21, 1107–1118 (2020).
pubmed: 32788748 doi: 10.1038/s41590-020-0762-x
Peng, Y. et al. Broad and strong memory CD4
pubmed: 32887977 pmcid: 7611020 doi: 10.1038/s41590-020-0782-6
Schulien, I. et al. Characterization of pre-existing and induced SARS-CoV-2-specific CD8
pubmed: 33184509 doi: 10.1038/s41591-020-01143-2
Parackova, Z., Bloomfield, M., Klocperk, A. & Sediva, A. Neutrophils mediate Th17 promotion in COVID-19 patients. J. Leukoc. Biol. 109, 73–76 (2021).
pubmed: 33289169 doi: 10.1002/JLB.4COVCRA0820-481RRR
Pairo-Castineira, E. et al. Genetic mechanisms of critical illness in Covid-19. Nature 591, 92–98 (2021).
pubmed: 33307546 doi: 10.1038/s41586-020-03065-y
Sahin, U. et al. COVID-19 vaccine BNT162b1 elicits human antibody and TH1 T cell responses. Nature 586, 594–599 (2020).
doi: 10.1038/s41586-020-2814-7 pubmed: 32998157
Meckiff, B. J. et al. Imbalance of regulatory and cytotoxic SARS-CoV-2-reactive CD4
pubmed: 33096020 pmcid: 7534589 doi: 10.1016/j.cell.2020.10.001
Pedersen, S. F. & Ho, Y. C. SARS-CoV-2: a storm is raging. J. Clin. Invest. 130, 2202–2205 (2020).
pubmed: 32217834 pmcid: 7190904 doi: 10.1172/JCI137647
Simon, D. et al. Patients with immune-mediated inflammatory diseases receiving cytokine inhibitors have low prevalence of SARS-CoV-2 seroconversion. Nat. Commun. 11, 3774 (2020).
pubmed: 32709909 pmcid: 7382482 doi: 10.1038/s41467-020-17703-6
Potdar, A. A. et al. Altered intestinal ACE2 levels are associated with inflammation, severe disease, and response to anti-cytokine therapy in inflammatory bowel disease. Gastroenterology 160, 809–822 (2021).
pubmed: 33160965 doi: 10.1053/j.gastro.2020.10.041
Burgueno, J. F. et al. Expression of SARS-CoV-2 entry molecules ACE2 and TMPRSS2 in the gut of patients with IBD. Inflamm. Bowel Dis. 26, 797–808 (2020).
pubmed: 32333601 pmcid: 7188157 doi: 10.1093/ibd/izaa085
Nowak, J. K. et al. Age, inflammation, and disease location are critical determinants of intestinal expression of SARS-CoV-2 receptor ACE2 and TMPRSS2 in inflammatory bowel disease. Gastroenterology 159, 1151–1154 (2020).
pubmed: 32413354 doi: 10.1053/j.gastro.2020.05.030
Verstockt, B. et al. Intestinal receptor of SARS-CoV-2 in inflamed IBD tissue seems downregulated by HNF4A in ileum and upregulated by interferon regulating factors in colon. J. Crohns Colitis 15, 485–498 (2021).
pubmed: 32915959 doi: 10.1093/ecco-jcc/jjaa185
Suarez-Farinas, M. et al. Intestinal inflammation modulates the expression of ACE2 and TMPRSS2 and potentially overlaps with the pathogenesis of SARS-CoV-2-related disease. Gastroenterology 160, 287–301 (2021).
pubmed: 32980345 doi: 10.1053/j.gastro.2020.09.029
Batlle, D., Wysocki, J. & Satchell, K. Soluble angiotensin-converting enzyme 2: a potential approach for coronavirus infection therapy? Clin. Sci. 134, 543–545 (2020).
doi: 10.1042/CS20200163
Garg, M. et al. Imbalance of the renin-angiotensin system may contribute to inflammation and fibrosis in IBD: a novel therapeutic target? Gut 69, 841–851 (2019).
pubmed: 31409604 doi: 10.1136/gutjnl-2019-318512
An, P. et al. Protection of 318 inflammatory bowel disease patients from the outbreak and rapid spread of COVID-19 infection in Wuhan, China. Lancet Gastroenterol. Hepatol. 5, 525–527 (2020).
pubmed: 32311321 pmcid: 7164865 doi: 10.1016/S2468-1253(20)30121-7
Berte, R. et al. Seroprevalence of SARS-CoV2 in IBD patients treated with biological therapy. J. Crohns Colitis 15, 864–868 (2021).
pubmed: 33211810 doi: 10.1093/ecco-jcc/jjaa237
Guerra, I. et al. Incidence, clinical characteristics, and evolution of SARS-CoV-2 infection in patients with inflammatory bowel disease: a single-center study in Madrid, Spain. Inflamm. Bowel Dis. 27, 25–33 (2021).
pubmed: 32830267 doi: 10.1093/ibd/izaa221
Allocca, M. et al. Patients with inflammatory bowel disease are not at increased risk of COVID-19: a large multinational cohort study. J. Clin. Med. 9, 3533 (2020).
pmcid: 7693947 doi: 10.3390/jcm9113533
Khan, N. et al. Are patients with inflammatory bowel disease at an increased risk of developing SARS-CoV-2 than patients without inflammatory bowel disease? Results from a nationwide Veterans’ Affairs Cohort Study. Am. J. Gastroenterol. 116, 808–810 (2021).
pubmed: 33982951 doi: 10.14309/ajg.0000000000001012
Brenner, E. J. et al. Benign evolution of SARS-Cov2 infections in children with inflammatory bowel disease: results from two international databases. Clin. Gastroenterol. Hepatol. 19, 394–396 (2020).
pubmed: 33059040 pmcid: 7550063 doi: 10.1016/j.cgh.2020.10.010
Burke, K. E. et al. Immunosuppressive therapy and risk of COVID-19 infection in patients with inflammatory bowel diseases. Inflamm. Bowel Dis. 27, 155–161 (2020).
doi: 10.1093/ibd/izaa278
Derikx, L. et al. Clinical outcomes of Covid-19 in patients with inflammatory bowel disease: a nationwide cohort study. J. Crohns Colitis 15, 529–539 (2021).
pubmed: 33079178 doi: 10.1093/ecco-jcc/jjaa215
Bezzio, C. et al. Outcomes of COVID-19 in 79 patients with IBD in Italy: an IG-IBD study. Gut 69, 1213–1217 (2020).
pubmed: 32354990 doi: 10.1136/gutjnl-2020-321411
Bossa, F. et al. Impact of the COVID-19 outbreak and the serum prevalence of SARS-CoV-2 antibodies in patients with inflammatory bowel disease treated with biologic drugs. Dig. Liver Dis. 53, 277–282 (2021).
pubmed: 33423942 pmcid: 7834247 doi: 10.1016/j.dld.2020.12.120
Ungaro, R. C. et al. Effect of IBD medications on COVID-19 outcomes: results from an international registry. Gut 70, 725–732 (2021).
pubmed: 33082265 doi: 10.1136/gutjnl-2020-322539
Brenner, E. J., Ungaro, R. C., Colombel, J. F. & Kappelman, M. D. SECURE-IBD Database Public Data Update. covidibd.org (2 May 2021).
Feagan, B. G. et al. Vedolizumab as induction and maintenance therapy for ulcerative colitis. N. Engl. J. Med. 369, 699–710 (2013).
pubmed: 23964932 doi: 10.1056/NEJMoa1215734
Sandborn, W. J. et al. Vedolizumab as induction and maintenance therapy for Crohn’s disease. N. Engl. J. Med. 369, 711–721 (2013).
pubmed: 23964933 doi: 10.1056/NEJMoa1215739
Zundler, S., Becker, E., Schulze, L. L. & Neurath, M. F. Immune cell trafficking and retention in inflammatory bowel disease: mechanistic insights and therapeutic advances. Gut 68, 1688–1700 (2019).
pubmed: 31127023 doi: 10.1136/gutjnl-2018-317977
Fischer, A. et al. Differential effects of α4β7 and GPR15 on homing of effector and regulatory T cells from patients with UC to the inflamed gut in vivo. Gut 65, 1642–1664 (2016).
pubmed: 26209553 doi: 10.1136/gutjnl-2015-310022
Sandborn, W. J. et al. Ustekinumab induction and maintenance therapy in refractory Crohn’s disease. N. Engl. J. Med. 367, 1519–1528 (2012).
pubmed: 23075178 doi: 10.1056/NEJMoa1203572
Sands, B. E. et al. Ustekinumab as induction and maintenance therapy for ulcerative colitis. N. Engl. J. Med. 381, 1201–1214 (2019).
pubmed: 31553833 doi: 10.1056/NEJMoa1900750
Neurath, M. F. Targeting immune cell circuits and trafficking in inflammatory bowel disease. Nat. Immunol. 20, 970–979 (2019).
pubmed: 31235952 doi: 10.1038/s41590-019-0415-0
Agrawal, M. et al. Characteristics and outcomes of IBD patients with COVID-19 on tofacitinib therapy in the SECURE-IBD Registry. Inflamm. Bowel Dis. 27, 585–589 (2021).
pubmed: 33325523 doi: 10.1093/ibd/izaa303
Cheng, K. W. et al. Thiopurine analogs and mycophenolic acid synergistically inhibit the papain-like protease of Middle East respiratory syndrome coronavirus. Antivir. Res. 115, 9–16 (2015).
pubmed: 25542975 doi: 10.1016/j.antiviral.2014.12.011
Carbajo-Lozoya, J. et al. Human coronavirus NL63 replication is cyclophilin A-dependent and inhibited by non-immunosuppressive cyclosporine A-derivatives including Alisporivir. Virus Res. 184, 44–53 (2014).
pubmed: 24566223 pmcid: 7114444 doi: 10.1016/j.virusres.2014.02.010
Feldmann, M. et al. Trials of anti-tumour necrosis factor therapy for COVID-19 are urgently needed. Lancet 395, 1407–1409 (2020).
pubmed: 32278362 pmcid: 7158940 doi: 10.1016/S0140-6736(20)30858-8
Salvarani, C. et al. Effect of tocilizumab vs standard care on clinical worsening in patients hospitalized with COVID-19 pneumonia: a randomized clinical trial. JAMA Intern. Med. 181, 24–31 (2021).
pubmed: 33080005 doi: 10.1001/jamainternmed.2020.6615
Stone, J. H. et al. Efficacy of tocilizumab in patients hospitalized with Covid-19. N. Engl. J. Med. 383, 2333–2344 (2020).
pubmed: 33085857 doi: 10.1056/NEJMoa2028836
Salama, C. et al. Tocilizumab in patients hospitalized with Covid-19 pneumonia. N. Engl. J. Med. 384, 20–30 (2021).
pubmed: 33332779 doi: 10.1056/NEJMoa2030340
Kalil, A. C. et al. Baricitinib plus remdesivir for hospitalized adults with Covid-19. N. Engl. J. Med. 384, 795–807 (2021).
pubmed: 33306283 doi: 10.1056/NEJMoa2031994
Dolinger, M. T. et al. Pediatric Crohn disease and multisystem inflammatory syndrome in children (MIS-C) and COVID-19 treated with infliximab. J. Ped. Gastroenterol. Nutr. 71, 153–155 (2020).
doi: 10.1097/MPG.0000000000002809
Abdullah, A., Neurath, M. F. & Atreya, R. Mild COVID-19 symptoms in an infliximab-treated ulcerative colitis patient: can ongoing anti-TNF therapy protect against the viral hyperinflammatory response and avoid aggravated outcomes? Visc. Med. 36, 338–342 (2020).
pubmed: 32999889 pmcid: 7316657 doi: 10.1159/000508740
Monreal, E. et al. The impact of immunosuppression and autoimmune disease on severe outcomes in patients hospitalized with COVID-19. J. Clin. Immunol. 41, 315–323 (2020).
pubmed: 33236261 doi: 10.1007/s10875-020-00927-y pmcid: 7685686
Ward, M. & Gooderham, M. Asymptomatic SARS-CoV2 infection in a patient receiving risankizumab, an inhibitor of interleukin 23. JAAD Case Rep. 7, 60–61 (2021).
pubmed: 33173806 doi: 10.1016/j.jdcr.2020.10.032
Wang, C. J. & Truong, A. K. COVID-19 infection on IL-23 inhibition. Dermatol Ther. 33, e13893 (2020).
pubmed: 32584451
Messina, F. & Piaserico, S. SARS-CoV-2 infection in a psoriatic patient treated with IL-23 inhibitor. J. Eur. Acad. Dermatol. Venereol. 34, e254–e255 (2020).
pubmed: 32294258 doi: 10.1111/jdv.16468
Rubin, D. T., Feuerstein, J. D., Wang, A. Y. & Cohen, R. D. AGA clinical practice update on management of inflammatory bowel disease during the COVID-19 pandemic: expert commentary. Gastroenterology 159, 350–357 (2020).
pubmed: 32283100 doi: 10.1053/j.gastro.2020.04.012
Magro, F. et al. Inflammatory bowel disease management during the COVID-19 outbreak: the ten do’s and don’ts from the ECCO-COVID Taskforce. J. Crohns Colitis 14, S798–S806 (2020).
pubmed: 32722754 doi: 10.1093/ecco-jcc/jjaa160
Gerussi, A. et al. Coronavirus disease 2019 (COVID-19) in autoimmune hepatitis: a lesson from immunosuppressed patients. Hepatol. Commun. 4, 1257–1262 (2020).
pmcid: 7300554 doi: 10.1002/hep4.1557
Verhelst, X., Somers, N., Geerts, A., Degroote, H. & Van Vlierberghe, H. Health status of patients with autoimmune hepatitis is not affected by the SARS-CoV-2 outbreak in Flanders, Belgium. J. Hepatol. 74, 240–241 (2021).
pubmed: 32918954 doi: 10.1016/j.jhep.2020.08.035
Marjot, T. et al. SARS-CoV-2 infection in patients with autoimmune hepatitis. J. Hepatol. 74, 1335–1343 (2021).
pubmed: 33508378 pmcid: 7835076 doi: 10.1016/j.jhep.2021.01.021
Lleo, A., Invernizzi, P., Lohse, A. W., Aghemo, A. & Carbone, M. Management of patients with autoimmune liver disease during COVID-19 pandemic. J. Hepatol. 73, 453–455 (2020).
pubmed: 32283134 pmcid: 7151539 doi: 10.1016/j.jhep.2020.04.002
Mohammed, A., Paranji, N., Chen, P. H. & Niu, B. COVID-19 in chronic liver disease and liver transplantation: a clinical review. J. Clin. Gastroenterol. 55, 187–194 (2021).
pubmed: 33394628 doi: 10.1097/MCG.0000000000001481
Force, A. C.-T., Lau, G. & Sharma, M. Clinical practice guidance for hepatology and liver transplant providers during the COVID-19 pandemic: APASL expert panel consensus recommendations. Hepatol. Int. 14, 415–428 (2020).
doi: 10.1007/s12072-020-10054-w
Akalin, E. et al. Covid-19 and kidney transplantation. N. Engl. J. Med. 382, 2475–2477 (2020).
pubmed: 32329975 doi: 10.1056/NEJMc2011117
Fernandez-Ruiz, M. et al. COVID-19 in solid organ transplant recipients: a single-center case series from Spain. Am. J. Transplant. 20, 1849–1858 (2020).
pubmed: 32301155 doi: 10.1111/ajt.15929
Coll, E. et al. COVID-19 in transplant recipients: the Spanish experience. Am. J. Transplant. 21, 1825–1837 (2021).
pubmed: 33098200 doi: 10.1111/ajt.16369
Mehta, S. A. et al. Incidence and outcomes of COVID-19 in kidney and liver transplant recipients with HIV: report from the National HOPE in Action Consortium. Transplantation 105, 216–224 (2021).
pubmed: 33165238 doi: 10.1097/TP.0000000000003527 pmcid: 8018537
Yi, S. G. et al. Early experience with COVID-19 and solid organ transplantation at a US high-volume transplant center. Transplantation 104, 2208–2214 (2020).
pubmed: 32496357 pmcid: 7302089 doi: 10.1097/TP.0000000000003339
Miarons, M. et al. COVID-19 in solid organ transplantation: a matched retrospective cohort study and evaluation of immunosuppression management. Transplantation 105, 138–150 (2020).
doi: 10.1097/TP.0000000000003460
Forns, X. & Navasa, M. Liver transplant immunosuppression during the covid-19 pandemic. Gastroenterol. Hepatol. 43, 457–463 (2020).
pubmed: 32646657 pmcid: 7290227 doi: 10.1016/j.gastrohep.2020.06.003
Di Maira, T. & Berenguer, M. COVID-19 and liver transplantation. Nat. Rev. Gastroenterol. Hepatol. 17, 526–528 (2020).
pubmed: 32651555 doi: 10.1038/s41575-020-0347-z pmcid: 7351540
Alconchel, F. et al. Severe COVID-19 after liver transplantation, surviving the pitfalls of learning on-the-go: three case reports. World J. Hepatol. 12, 870–879 (2020).
pubmed: 33200024 pmcid: 7643211 doi: 10.4254/wjh.v12.i10.870
Dhand, A. et al. Successful liver transplantation in a patient recovered from COVID-19. Transpl. Infect. Dis. 23, e13492 (2021).
pubmed: 33040430 doi: 10.1111/tid.13492
Niess, H. et al. Liver transplantation in a patient after COVID-19 — rapid loss of antibodies and prolonged viral RNA shedding. Am. J. Transplant. 21, 1629–1632 (2020).
pubmed: 33047475 doi: 10.1111/ajt.16349
Wei, L., Liu, B., Zhao, Y. & Chen, Z. Prolonged shedding of SARS-CoV-2 in an elderly liver transplant patient infected by COVID-19: a case report. Ann. Palliat. Med. https://doi.org/10.21037/apm-20-996 (2020).
doi: 10.21037/apm-20-996 pubmed: 33615806
Becchetti, C. et al. COVID-19 in an international European liver transplant recipient cohort. Gut 69, 1832–1840 (2020).
pubmed: 32571972 doi: 10.1136/gutjnl-2020-321923
Zhang, L. et al. Clinical characteristics of COVID-19-infected cancer patients: a retrospective case study in three hospitals within Wuhan, China. Ann. Oncol. 31, 894–901 (2020).
pubmed: 32224151 doi: 10.1016/j.annonc.2020.03.296
Nahshon, C. et al. Outcomes of diagnosed COVID-19 cancer patients: concerning results of a systematic review. J. Chemother. https://doi.org/10.1080/1120009X.2021.1899442 (2021).
doi: 10.1080/1120009X.2021.1899442 pubmed: 33769233
Colmenero, J. et al. Epidemiological pattern, incidence and outcomes of COVID-19 in liver transplant patients. J. Hepatol. 74, 148–155 (2020).
pubmed: 32750442 pmcid: 7395653 doi: 10.1016/j.jhep.2020.07.040
Allison, A. C. & Eugui, E. M. Mechanisms of action of mycophenolate mofetil in preventing acute and chronic allograft rejection. Transplantation 80 (Suppl. 2), 181–190 (2005).
doi: 10.1097/01.tp.0000186390.10150.66
Webb, G. J. et al. Outcomes following SARS-CoV-2 infection in liver transplant recipients: an international registry study. Lancet Gastroenterol. Hepatol. 5, 1008–1016 (2020).
pubmed: 32866433 pmcid: 7455160 doi: 10.1016/S2468-1253(20)30271-5
Belli, L. S. et al. Protective role of tacrolimus, deleterious role of age and comorbidities in liver transplant recipients with Covid-19: results from the ELITA/ELTR multi-center European study. Gastroenterology 160, 1151–1163 (2021).
pubmed: 33307029 doi: 10.1053/j.gastro.2020.11.045
Rodriguez-Peralvarez, M., Salcedo, M., Colmenero, J. & Pons, J. A. Modulating immunosuppression in liver transplant patients with COVID-19. Gut 70, 1412–1414 (2021).
pubmed: 32816964 doi: 10.1136/gutjnl-2020-322620
Azzi, Y., Bartash, R., Scalea, J., Loarte-Campos, P. & Akalin, E. COVID-19 and solid organ transplantation: a review article. Transplantation 105, 37–55 (2021).
pubmed: 33148977 doi: 10.1097/TP.0000000000003523
Lukin, D. J. et al. Baseline disease activity and steroid therapy stratify risk of COVID-19 in patients with inflammatory bowel disease. Gastroenterology 159, 1541–1544 (2020).
pubmed: 32479824 doi: 10.1053/j.gastro.2020.05.066
Brenner, E. J. et al. Corticosteroids, but not TNF antagonists, are associated with adverse COVID-19 outcomes in patients with inflammatory bowel diseases: results from an international registry. Gastroenterology 159, 481–491 (2020).
pubmed: 32425234 doi: 10.1053/j.gastro.2020.05.032
Schett, G., Sticherling, M. & Neurath, M. F. COVID-19: risk for cytokine targeting in chronic inflammatory diseases? Nat. Rev. Immunol. 20, 271–272 (2020).
pubmed: 32296135 doi: 10.1038/s41577-020-0312-7 pmcid: 7186927
Horby, P. et al. Dexamethasone in hospitalized patients with Covid-19 — preliminary report. N. Engl. J. Med. 384, 693–704 (2021).
pubmed: 32678530 doi: 10.1056/NEJMoa2021436
Cheng, W. et al. Efficacy and safety of corticosteroid treatment in patients with COVID-19: a systematic review and meta-analysis. Front. Pharmacol. 11, 571156 (2020).
pubmed: 33013412 pmcid: 7510504 doi: 10.3389/fphar.2020.571156
Shuto, H. et al. A systematic review of corticosteroid treatment for noncritically ill patients with COVID-19. Sci. Rep. 10, 20935 (2020).
pubmed: 33262415 pmcid: 7708623 doi: 10.1038/s41598-020-78054-2
Parker, E. P. K., Shrotri, M. & Kampmann, B. Keeping track of the SARS-CoV-2 vaccine pipeline. Nat. Rev. Immunol. 20, 650 (2020).
pubmed: 32989290 doi: 10.1038/s41577-020-00455-1
Mahase, E. Covid-19: Novavax vaccine efficacy is 86% against UK variant and 60% against South African variant. BMJ 372, n296 (2021).
pubmed: 33526412 doi: 10.1136/bmj.n296
Logunov, D. Y. et al. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. Lancet 397, 671–681 (2021).
pubmed: 33545094 pmcid: 7852454 doi: 10.1016/S0140-6736(21)00234-8
Alexander, J. L. et al. SARS-CoV-2 vaccination for patients with inflammatory bowel disease: a British Society of Gastroenterology Inflammatory Bowel Disease section and IBD Clinical Research Group position statement. Lancet Gastroenterol. Hepatol. 6, 218–224 (2021).
pubmed: 33508241 pmcid: 7834976 doi: 10.1016/S2468-1253(21)00024-8
Fiorino, G. et al. Effects of immunosuppression on immune response to pneumococcal vaccine in inflammatory bowel disease: a prospective study. Inflamm. Bowel Dis. 18, 1042–1047 (2012).
pubmed: 21674732 doi: 10.1002/ibd.21800
Cullen, G., Bader, C., Korzenik, J. R. & Sands, B. E. Serological response to the 2009 H1N1 influenza vaccination in patients with inflammatory bowel disease. Gut 61, 385–391 (2012).
pubmed: 21757451 doi: 10.1136/gutjnl-2011-300256
Kennedy, N. A. et al. Anti-SARS-CoV-2 antibody responses are attenuated in patients with IBD treated with infliximab. Gut 70, 865–875 (2021).
pubmed: 33753421 doi: 10.1136/gutjnl-2021-324388
Fix, O. K. et al. AASLD Expert Panel consensus statement: vaccines to prevent COVID-19 infection in patients with liver disease. Hepatology https://doi.org/10.1002/hep.31751 (2021).
doi: 10.1002/hep.31751 pubmed: 34491583
Siegel, C. A. et al. SARS-CoV-2 vaccination for patients with inflammatory bowel diseases: recommendations from an international consensus meeting. Gut 70, 635–640 (2021).
pubmed: 33472895 doi: 10.1136/gutjnl-2020-324000
Sandborn, W. J. et al. A randomized trial of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with moderate-to-severe Crohn’s disease. Gastroenterology 135, 1130–1141 (2008).
pubmed: 18706417 doi: 10.1053/j.gastro.2008.07.014
Rochwerg, B. et al. A living WHO guideline on drugs for covid-19. BMJ 370, m3379 (2020).
pubmed: 32887691 doi: 10.1136/bmj.m3379

Auteurs

Markus F Neurath (MF)

Department of Medicine 1, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen, Germany. markus.neurath@uk-erlangen.de.
Deutsches Zentrum Immuntherapie DZI, Erlangen, Germany. markus.neurath@uk-erlangen.de.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH