Convergent acoustic community structure in South Asian dry and wet grassland birds.


Journal

Biology open
ISSN: 2046-6390
Titre abrégé: Biol Open
Pays: England
ID NLM: 101578018

Informations de publication

Date de publication:
01 06 2021
Historique:
received: 28 01 2021
accepted: 20 05 2021
entrez: 18 6 2021
pubmed: 19 6 2021
medline: 18 1 2022
Statut: ppublish

Résumé

Although the study of bird acoustic communities has great potential in long-term monitoring and conservation, their assembly and dynamics remain poorly understood. Grassland habitats in South Asia comprise distinct biomes with unique avifauna, presenting an opportunity to address how community-level patterns in acoustic signal space arise. Similarity in signal space of different grassland bird assemblages may result from phylogenetic similarity, or because different bird groups partition the acoustic resource, resulting in convergent distributions in signal space. Here, we quantify the composition, signal space and phylogenetic diversity of bird acoustic communities from dry semiarid grasslands of northwest India and wet floodplain grasslands of northeast India, two major South Asian grassland biomes. We find that acoustic communities occupying these distinct biomes exhibit convergent, overdispersed distributions in signal space. However, dry grasslands exhibit higher phylogenetic diversity, and the two communities are not phylogenetically similar. The Sylvioidea encompasses half the species in the wet grassland acoustic community, with an expanded signal space compared to the dry grasslands. We therefore hypothesize that different clades colonizing grasslands partition the acoustic resource, resulting in convergent community structure across biomes. Many of these birds are threatened, and acoustic monitoring will support conservation measures in these imperiled, poorly-studied habitats. This article has an associated First Person interview with the first author of the paper.

Identifiants

pubmed: 34142707
pii: 269190
doi: 10.1242/bio.058612
pmc: PMC8272033
pii:
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2021. Published by The Company of Biologists Ltd.

Déclaration de conflit d'intérêts

Competing interests The authors declare no competing or financial interests.

Références

Am Nat. 2004 Jun;163(6):823-43
pubmed: 15266381
Proc Natl Acad Sci U S A. 2020 Aug 4;117(31):18550-18556
pubmed: 32675246
Biol Rev Camb Philos Soc. 2017 May;92(2):698-715
pubmed: 26785932
PLoS One. 2014 May 20;9(5):e98064
pubmed: 24846309
Nature. 2014 May 8;509(7499):222-5
pubmed: 24776798
Philos Trans R Soc Lond B Biol Sci. 2016 Sep 19;371(1703):
pubmed: 27502371
Proc Natl Acad Sci U S A. 2014 Jan 21;111(3):1020-5
pubmed: 24395769
Mol Phylogenet Evol. 2006 Feb;38(2):381-97
pubmed: 16054402
Am Nat. 2010 Nov;176(5):E128-42
pubmed: 20887187
Bioinformatics. 2010 Jun 1;26(11):1463-4
pubmed: 20395285
Nature. 2012 Nov 15;491(7424):444-8
pubmed: 23123857
Am Nat. 2000 Aug;156(2):145-155
pubmed: 10856198
R Soc Open Sci. 2016 Aug 10;3(8):160117
pubmed: 27853589
Biol Lett. 2008 Dec 23;4(6):651-4
pubmed: 18832055

Auteurs

Sutirtha Lahiri (S)

Department of Biology, Indian Institute of Science Education and Research (IISER) Pune, Pashan Road, Pune 411008, India.

Nafisa A Pathaw (NA)

Department of Biology, Indian Institute of Science Education and Research (IISER) Pune, Pashan Road, Pune 411008, India.

Anand Krishnan (A)

Department of Biology, Indian Institute of Science Education and Research (IISER) Pune, Pashan Road, Pune 411008, India.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing
Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice

Classifications MeSH