Enhancing proteasomal processing improves survival for a peptide vaccine used to treat glioblastoma.
Journal
Science translational medicine
ISSN: 1946-6242
Titre abrégé: Sci Transl Med
Pays: United States
ID NLM: 101505086
Informations de publication
Date de publication:
16 06 2021
16 06 2021
Historique:
received:
21
03
2019
revised:
24
08
2020
accepted:
18
03
2021
entrez:
17
6
2021
pubmed:
18
6
2021
medline:
13
7
2021
Statut:
ppublish
Résumé
Despite its essential role in antigen presentation, enhancing proteasomal processing is an unexploited strategy for improving vaccines. pepVIII, an anticancer vaccine targeting EGFRvIII, has been tested in several trials for glioblastoma. We examined 20 peptides in silico and experimentally, which showed that a tyrosine substitution (Y6-pepVIII) maximizes proteasome cleavage and survival in a subcutaneous tumor model in mice. In an intracranial glioma model, Y6-pepVIII showed a 62 and 31% improvement in median survival compared to control animals and pepVIII-vaccinated mice. Y6-pepVIII vaccination altered tumor-infiltrating lymphocyte subsets and expression of PD-1 on intratumoral T cells. Combination with anti-PD-1 therapy cured 45% of the Y6-pepVIII-vaccinated mice but was ineffective for pepVIII-treated mice. Liquid chromatography-tandem mass spectrometry analysis of proteasome-digested pepVIII and Y6-pepVIII revealed that most fragments were similar but more abundant in Y6-pepVIII digests and 77% resulted from proteasome-catalyzed peptide splicing (PCPS). We identified 10 peptides that bound human and murine MHC class I. Nine were PCPS products and only one peptide was colinear with EGFRvIII, indicating that PCPS fragments may be a component of MHC class I recognition. Despite not being colinear with EGFRvIII, two of three PCPS products tested were capable of increasing survival when administered independently as vaccines. We hypothesize that the immune response to a vaccine represents the collective contribution from multiple PCPS and linear products. Our work suggests a strategy to increase proteasomal processing of a vaccine that results in an augmented immune response and enhanced survival in mice.
Identifiants
pubmed: 34135109
pii: 13/598/eaax4100
doi: 10.1126/scitranslmed.aax4100
pii:
doi:
Substances chimiques
Cancer Vaccines
0
Peptides
0
Vaccines, Subunit
0
Proteasome Endopeptidase Complex
EC 3.4.25.1
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.