Rhizosphere Bacterial Networks, but Not Diversity, Are Impacted by Pea-Wheat Intercropping.

bacterial community biodiversity intercropping networks pea rhizosphere wheat

Journal

Frontiers in microbiology
ISSN: 1664-302X
Titre abrégé: Front Microbiol
Pays: Switzerland
ID NLM: 101548977

Informations de publication

Date de publication:
2021
Historique:
received: 01 03 2021
accepted: 03 05 2021
entrez: 15 6 2021
pubmed: 16 6 2021
medline: 16 6 2021
Statut: epublish

Résumé

Plant-plant associations, notably cereal-legume intercropping, have been proposed in agroecology to better value resources and thus reduce the use of chemical inputs in agriculture. Wheat-pea intercropping allows to decreasing the use of nitrogen fertilization through ecological processes such as niche complementarity and facilitation. Rhizosphere microbial communities may account for these processes, since they play a major role in biogeochemical cycles and impact plant nutrition. Still, knowledge on the effect of intecropping on the rhizosphere microbiota remains scarce. Especially, it is an open question whether rhizosphere microbial communities in cereal-legume intercropping are the sum or not of the microbiota of each plant species cultivated in sole cropping. In the present study, we assessed the impact of wheat and pea in IC on the diversity and structure of their respective rhizosphere microbiota. For this purpose, several cultivars of wheat and pea were cultivated in sole and intercropping. Roots of wheat and pea were collected separately in intercropping for microbiota analyses to allow deciphering the effect of IC on the bacterial community of each plant species/cultivar tested. Our data confirmed the well-known specificity of the rhizosphere effect and further stress the differentiation of bacterial communities between pea genotypes (Hr and hr). As regards the intercropping effect, diversity and structure of the rhizosphere microbiota were comparable to sole cropping. However, a specific co-occurrence pattern in each crop rhizosphere due to intercropping was revealed through network analysis. Bacterial co-occurrence network of wheat rhizosphere in IC was dominated by OTUs belonging to Alphaproteobacteria, Bacteroidetes and Gammaproteobacteria. We also evidenced a common network found in both rhizosphere under IC, indicating the interaction between the plant species; this common network was dominated by Acidobacteria, Alphaproteobacteria, and Bacteroidetes, with three OTUs belonging to Acidobacteria, Betaproteobacteria and Chloroflexi that were identified as keystone taxa. These findings indicate more complex rhizosphere bacterial networks in intercropping. Possible implications of these conclusions are discussed in relation with the functioning of rhizosphere microbiota in intercropping accounting for its beneficial effects.

Identifiants

pubmed: 34127925
doi: 10.3389/fmicb.2021.674556
pmc: PMC8195745
doi:

Types de publication

Journal Article

Langues

eng

Pagination

674556

Informations de copyright

Copyright © 2021 Pivato, Semblat, Guégan, Jacquiod, Martin, Deau, Moutier, Lecomte, Burstin and Lemanceau.

Déclaration de conflit d'intérêts

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Références

Trends Plant Sci. 2017 Jul;22(7):583-595
pubmed: 28549621
Ann Bot. 2016 Mar;117(3):363-77
pubmed: 26749590
Nat Commun. 2018 Aug 2;9(1):3033
pubmed: 30072764
Ecotoxicol Environ Saf. 2020 Dec 15;206:111383
pubmed: 33002822
Genomics. 2020 Nov;112(6):4760-4768
pubmed: 32712294
PeerJ. 2016 Oct 18;4:e2584
pubmed: 27781170
Bioinformatics. 2010 Jan 15;26(2):266-7
pubmed: 19914921
Trends Plant Sci. 2017 Jul;22(7):555-558
pubmed: 28592368
Proc Natl Acad Sci U S A. 2013 Apr 16;110(16):6548-53
pubmed: 23576752
J Microbiol Methods. 2011 Mar;84(3):454-60
pubmed: 21256879
Front Microbiol. 2020 Jan 15;10:3007
pubmed: 32010086
Front Microbiol. 2017 Dec 18;8:2529
pubmed: 29326674
Nat Rev Microbiol. 2013 Nov;11(11):789-99
pubmed: 24056930
Front Microbiol. 2014 May 20;5:219
pubmed: 24904535
Plant Cell Environ. 2019 Jun;42(6):2028-2044
pubmed: 30646427
Front Microbiol. 2018 Jul 06;9:1521
pubmed: 30034385
New Phytol. 2015 Mar;205(4):1424-1430
pubmed: 25422041
Front Microbiol. 2021 Jan 14;11:596472
pubmed: 33519733
Proc Natl Acad Sci U S A. 2007 Jul 3;104(27):11192-6
pubmed: 17592130
PLoS One. 2013 Dec 13;8(12):e82443
pubmed: 24349285
Can J Microbiol. 2020 Jan;66(1):71-85
pubmed: 31658427
Front Microbiol. 2016 May 31;7:744
pubmed: 27303369
PLoS One. 2013 Apr 22;8(4):e61217
pubmed: 23630581
Nat Rev Genet. 2014 Dec;15(12):797-813
pubmed: 25266034
New Phytol. 2015 Jun;206(4):1196-206
pubmed: 25655016
Microbiol Res. 2019 Apr;221:36-49
pubmed: 30825940
Plant Physiol. 2011 Jul;156(3):1078-86
pubmed: 21508183
Microbiome. 2020 Jun 4;8(1):82
pubmed: 32498714
Front Microbiol. 2020 Jun 03;11:968
pubmed: 32582047
Bioinformatics. 2010 Oct 1;26(19):2460-1
pubmed: 20709691
Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):9110-4
pubmed: 10890915
PLoS One. 2014 Aug 21;9(8):e105592
pubmed: 25144201
Plant Physiol. 2014 Oct;166(2):689-700
pubmed: 25059708
Sci Rep. 2020 Jan 29;10(1):1452
pubmed: 31996781
Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6
pubmed: 23193283
Microorganisms. 2020 Jun 02;8(6):
pubmed: 32498315
Arch Microbiol. 2016 Dec;198(10):987-993
pubmed: 27339258
Nat Commun. 2017 Feb 08;8:14349
pubmed: 28176768
ISME J. 2013 Dec;7(12):2248-58
pubmed: 23864127
Genome Biol. 2010;11(10):R106
pubmed: 20979621
PLoS Biol. 2016 Feb 12;14(2):e1002378
pubmed: 26871440
FEMS Microbiol Ecol. 2020 Jun 1;96(6):
pubmed: 32275297
mBio. 2020 Feb 4;11(1):
pubmed: 32019791
ISME J. 2015 Mar 17;9(4):980-9
pubmed: 25350154
Int J Mol Sci. 2018 Feb 22;19(2):
pubmed: 29470429
Appl Environ Microbiol. 1995 Mar;61(3):1004-12
pubmed: 16534950
Front Microbiol. 2020 Jul 31;11:1814
pubmed: 32849421
ISME J. 2012 Feb;6(2):343-51
pubmed: 21900968
Sci Rep. 2020 Jul 22;10(1):12234
pubmed: 32699344
Appl Environ Microbiol. 2011 Nov;77(21):7846-9
pubmed: 21890669
ISME J. 2016 Jan;10(1):265-8
pubmed: 26023875
PLoS One. 2010 Mar 10;5(3):e9490
pubmed: 20224823
Front Microbiol. 2020 Oct 30;11:580024
pubmed: 33193209
Sci Rep. 2019 Nov 18;9(1):16953
pubmed: 31740751
Adv Neural Inf Process Syst. 2010 Dec 31;24(2):1432-1440
pubmed: 25152607
PeerJ. 2021 Feb 16;9:e10880
pubmed: 33628642
New Phytol. 2007;176(1):197-210
pubmed: 17803650
PLoS Comput Biol. 2014 Apr 03;10(4):e1003531
pubmed: 24699258
Nat Methods. 2010 May;7(5):335-6
pubmed: 20383131
mSystems. 2016 Mar 29;1(2):
pubmed: 27822520
Ecol Evol. 2017 Sep 10;7(20):8419-8426
pubmed: 29075459
Appl Environ Microbiol. 2007 Feb;73(3):913-21
pubmed: 17142371
FEMS Microbiol Ecol. 2009 Apr;68(1):1-13
pubmed: 19243436

Auteurs

Barbara Pivato (B)

Agroécologie, AgroSup Dijon, INRAE, Université de Bourgogne - Université de Bourgogne Franche-Comté, Dijon, France.

Amélie Semblat (A)

Agroécologie, AgroSup Dijon, INRAE, Université de Bourgogne - Université de Bourgogne Franche-Comté, Dijon, France.

Thibault Guégan (T)

Agroécologie, AgroSup Dijon, INRAE, Université de Bourgogne - Université de Bourgogne Franche-Comté, Dijon, France.

Samuel Jacquiod (S)

Agroécologie, AgroSup Dijon, INRAE, Université de Bourgogne - Université de Bourgogne Franche-Comté, Dijon, France.

Juliette Martin (J)

INRAE, UE115 Domaine Expérimental d'Epoisses, Dijon, France.

Florence Deau (F)

Agroécologie, AgroSup Dijon, INRAE, Université de Bourgogne - Université de Bourgogne Franche-Comté, Dijon, France.

Nathalie Moutier (N)

IGEPP, INRAE, Institut Agro Agrocampus Ouest, Université de Rennes 1, Le Rheu, France.

Christophe Lecomte (C)

Agroécologie, AgroSup Dijon, INRAE, Université de Bourgogne - Université de Bourgogne Franche-Comté, Dijon, France.

Judith Burstin (J)

Agroécologie, AgroSup Dijon, INRAE, Université de Bourgogne - Université de Bourgogne Franche-Comté, Dijon, France.

Philippe Lemanceau (P)

Agroécologie, AgroSup Dijon, INRAE, Université de Bourgogne - Université de Bourgogne Franche-Comté, Dijon, France.

Classifications MeSH