Inhibition of translation initiation factor eIF4a inactivates heat shock factor 1 (HSF1) and exerts anti-leukemia activity in AML.


Journal

Leukemia
ISSN: 1476-5551
Titre abrégé: Leukemia
Pays: England
ID NLM: 8704895

Informations de publication

Date de publication:
09 2021
Historique:
received: 20 08 2020
accepted: 21 05 2021
revised: 01 04 2021
pubmed: 16 6 2021
medline: 6 10 2021
entrez: 15 6 2021
Statut: ppublish

Résumé

Eukaryotic initiation factor 4A (eIF4A), the enzymatic core of the eIF4F complex essential for translation initiation, plays a key role in the oncogenic reprogramming of protein synthesis, and thus is a putative therapeutic target in cancer. As important component of its anticancer activity, inhibition of translation initiation can alleviate oncogenic activation of HSF1, a stress-inducible transcription factor that enables cancer cell growth and survival. Here, we show that primary acute myeloid leukemia (AML) cells exhibit the highest transcript levels of eIF4A1 compared to other cancer types. eIF4A inhibition by the potent and specific compound rohinitib (RHT) inactivated HSF1 in these cells, and exerted pronounced in vitro and in vivo anti-leukemia effects against progenitor and leukemia-initiating cells, especially those with FLT3-internal tandem duplication (ITD). In addition to its own anti-leukemic activity, genetic knockdown of HSF1 also sensitized FLT3-mutant AML cells to clinical FLT3 inhibitors, and this synergy was conserved in FLT3 double-mutant cells carrying both ITD and tyrosine kinase domain mutations. Consistently, the combination of RHT and FLT3 inhibitors was highly synergistic in primary FLT3-mutated AML cells. Our results provide a novel therapeutic rationale for co-targeting eIF4A and FLT3 to address the clinical challenge of treating FLT3-mutant AML.

Identifiants

pubmed: 34127794
doi: 10.1038/s41375-021-01308-z
pii: 10.1038/s41375-021-01308-z
pmc: PMC8764661
mid: NIHMS1769616
doi:

Substances chimiques

Antineoplastic Agents 0
Heat Shock Transcription Factors 0
Eukaryotic Initiation Factor-4A EC 2.7.7.-

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

2469-2481

Subventions

Organisme : NCI NIH HHS
ID : P30 CA016672
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA175744
Pays : United States
Organisme : NIGMS NIH HHS
ID : R35 GM118173
Pays : United States

Informations de copyright

© 2021. The Author(s), under exclusive licence to Springer Nature Limited.

Références

DiNardo CD, Jonas BA, Pullarkat V, Thirman MJ, Garcia JS, Wei AH, et al. Azacitidine and venetoclax in previously untreated acute myeloid leukemia. N Eng J Med 2020;383:617–29.
doi: 10.1056/NEJMoa2012971
Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND, et al. Genomic classification and prognosis in acute myeloid leukemia. N Eng J Med 2016;374:2209–21.
doi: 10.1056/NEJMoa1516192
The Cancer Genome Atlas Research Network. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Eng J Med 2013;368:2059–74.
doi: 10.1056/NEJMoa1301689
Tyner JW, Tognon CE, Bottomly D, Wilmot B2, Kurtz SE, Savage SL, et al. Functional genomic landscape of acute myeloid leukaemia. Nature. 2018;562:526–31.
pubmed: 30333627 pmcid: 6280667 doi: 10.1038/s41586-018-0623-z
Iacobucci I, Meggendorfer M, Nadarajah N, Pounds S, Shi L, Qu C, et al. Integrated transcriptomic and genomic sequencing identifies prognostic constellations of driver mutations in acute myeloid leukemia and myelodysplastic syndromes. Blood 2019;134:4.
doi: 10.1182/blood-2019-132746
Ng SW, Mitchell A, Kennedy JA, Chen WC, McLeod J, Ibrahimova N, et al. A 17-gene stemness score for rapid determination of risk in acute leukaemia. Nature 2016;540:433–7.
pubmed: 27926740 doi: 10.1038/nature20598
Chu J, Cargnello M, Topisirovic I, Pelletier J. Translation initiation factors: reprogramming protein synthesis in cancer. Trends Cell Biol 2016;26:918–33.
pubmed: 27426745 doi: 10.1016/j.tcb.2016.06.005
Galicia-Vazquez G, Cencic R, Robert F, Agenor AQ, Pelletier J. A cellular response linking eIF4AI activity to eIF4AII transcription. RNA. 2012;18:1373–84.
pubmed: 22589333 pmcid: 3383968 doi: 10.1261/rna.033209.112
Garcίa-Garcίa C, Frieda KL, Feoktistova K, Fraser CS, Block SM. Factor-dependent processivity in human eIF4A DEAD-box helicase. Science 2015;348:1486–8.
doi: 10.1126/science.aaa5089
Wolfe A, Singh K, Zhong Y, Drewe P, Rajasekhar VK, Sanghvi VR, et al. RNA G-quadruplexes cause eIF4A dependent oncogene translation in cancer. Nature 2014;513:65–70.
pubmed: 25079319 pmcid: 4492470 doi: 10.1038/nature13485
Lazaris-Karatzas A, Montine KS, Sonenberg N. Malignant transformation by a eukaryotic initiation factor subunit that binds to mRNA 5′ cap. Nature 1990;345:544–7.
pubmed: 2348862 doi: 10.1038/345544a0
Larsson O, Li S, Issaenko OA, Avdulov Peterson M, Smith K, et al. Eukaryotic translation initiation factor 4E-induced progression of primary human mammary epithelial cells along the cancer pathway is associated with targeted translational deregulation of oncogenic drivers and inhibitors. Cancer Res. 2007;67:6814–24.
pubmed: 17638893 doi: 10.1158/0008-5472.CAN-07-0752
Ruggero D, Montanaro L, Ma L, Xu W, Londei P, Cordon-Cardo C, et al. The translation factor eIF-4E promotes tumor formation and cooperates with c-Myc in lymphomagenesis. Nat Med. 2004;10:484–6.
pubmed: 15098029 doi: 10.1038/nm1042
Wendel HG, De Stanchina E, Fridman JS, Malina A, Ray S, Kogan S, et al. Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature. 2004;428:332–7.
pubmed: 15029198 doi: 10.1038/nature02369
Li BD, Gruner JS, Abreo F, Johnson LW, Yu H, Nawas S, et al. Prospective study of eukaryotic initiation factor 4E protein elevation and breast cancer outcome. Ann Surg 2002;235:732–8.
pubmed: 11981220 pmcid: 1422500 doi: 10.1097/00000658-200205000-00016
Ilic N, Utermark T, Widlund HR, Roberts TM. PI3K-targeted therapy can be evaded by gene amplification along the MYC-eukaryotic translation initiation factor 4E (eIF4E) axis. Proc Natl Acad Sci USA 2011;108:E699–708.
pubmed: 21876152 pmcid: 3174675 doi: 10.1073/pnas.1108237108
Zindy P, Bergé Y, Allal B, Filleron T, Pierredon S, Cammas A, et al. Formation of the eIF4F translation–initiation complex determines sensitivity to anticancer drugs targeting the EGFR and HER2 receptors. Cancer Res. 2011;71:4068–73.
pubmed: 21498638 doi: 10.1158/0008-5472.CAN-11-0420
Boussemart L, Malka-Mahieu H, Girault I, Allard D, Hemmingsson O, Tomasic G, et al. eIF4F is a nexus of resistance to anti-BRAF and anti-MEK cancer therapies. Nature 2014;513:105–9.
pubmed: 25079330 doi: 10.1038/nature13572
Cencic R, Carriera M, Trnkusa T, Porco JA, Minden M, Pelletier J. Synergistic effect of inhibiting translation initiation in combination with cytotoxic agents in acute myelogenous leukemia cells. Leuk Res. 2010;34:535–41.
pubmed: 19726085 doi: 10.1016/j.leukres.2009.07.043
Li S, Jia Y, Jacobson B, McCauley J, Kratzke R, Bitterman PB, et al. Treatment of breast and lung cancer cells with a N-7 benzyl guanosine monophosphate tryptamine phosphoramidate pronucleotide (4Ei-1) results in chemosensitization to gemcitabine and induced eIF4E proteasomal degradation. Mol Pharm 2013;10:523–31.
pubmed: 23289910 pmcid: 5920544 doi: 10.1021/mp300699d
Moerke NJ, Aktas H, Chen H, Cantel S, Reibarkh MY, Fahmy A, et al. Small molecule inhibition of the interaction between the translation initiation factors eIF4E and eIF4G. Cell. 2007;128:257–67.
pubmed: 17254965 doi: 10.1016/j.cell.2006.11.046
Descamps G, Gomez-Bougie P, Tamburini J, Green A, Bouscary D, Maiga S, et al. The cap-translation inhibitor 4EGI-1 induces apoptosis in multiple myeloma through Noxa induction. Br J Cancer 2012;106:1660–7.
pubmed: 22510748 pmcid: 3349175 doi: 10.1038/bjc.2012.139
Chen L, Aktas BH, Wang Y, He X, Sahoo R, Zhang N, et al. Tumor suppression by small molecule inhibitors of translation initiation. Oncotarget. 2012;3:869–81.
pubmed: 22935625 pmcid: 3478463 doi: 10.18632/oncotarget.598
Cencic R, Hall DR, Robert F, Du Y, Min J, Li L, et al. Reversing chemoresistance by small molecule inhibition of the translation initiation complex eIF4F. Proc Natl Acad Sci USA. 2011;108:1046–51.
pubmed: 21191102 doi: 10.1073/pnas.1011477108
Assouline S, Culjkovic B, Cocolakis E, Rousseau C, Beslu N, AmriMolecular A, et al. Molecular targeting of the oncogene eIF4E in acute myeloid leukemia (AML): a proof-of-principle clinical trial with ribavirin. Blood 2009;114:257–60.
pubmed: 19433856 doi: 10.1182/blood-2009-02-205153
Volpon L, Culjkovic-Kraljacic B, Osborne MJ, Ramteke A, Sun Q, Niesman A. et al. Importin 8 mediates m
pubmed: 27114554 pmcid: 4868427 doi: 10.1073/pnas.1524291113
Sridharan S, Robeson M, Bastihalli-Tukaramrao D, Howard CM, Subramaniyan B, Tilley AMC et al. Targeting of the eukaryotic translation initiation factor 4A against breast cancer stemness. Front Oncol. 2019. https://doi.org/10.3389/fonc.2019.01311 .
Manier S, Huynh D, Shen YJ, Zhou J, Yusufzai T, Salem KZ et al. Inhibiting the oncogenic translation program is an effective therapeutic strategy in multiple myeloma. Sci Transl Med. 2017. https://doi.org/10.1126/scitranslmed.aal2668 .
Chu J, Galicia-Vazquez G, Cencic R, Mills JR, Katigbak A, Porco JA, Jr. et al. CRISPR-mediated drug-target validation reveals selective pharmacological inhibition of the RNA Helicase, eIF4A. Cell Rep. 2016;15:2340–7.
pubmed: 27239032 pmcid: 5315212 doi: 10.1016/j.celrep.2016.05.005
Iwasaki S, Iwasaki W, Takahashi M, Sakamoto A, Watanabe C, Shichino Y, et al. The translation inhibitor rocaglamide targets a bimolecular cavity between eIF4A and polypurine RNA. Mol Cell 2019;73:738–48.
pubmed: 30595437 doi: 10.1016/j.molcel.2018.11.026
King ML, Chiang CC, Ling HC, Fujita E, Ochiai M, McPhail AT. X-Ray crystal structure of rocaglamide, a novel antileukemic 1H-cyclopenta[b]benzofuran from Aglaia elliptifolia. J Chem Soc Chem Commun 1992;20:1150–1.
Basmadjian C, Thuaud F, Ribeiro N, Desaubry L. Flavaglines: potent anticancer drugs that target prohibitins and the helicase eIF4A. Future Med Chem 2013;5:2185–97.
pubmed: 24261894 doi: 10.4155/fmc.13.177
Pan L, Woodard JL, Lucas DM, Fuchs JR, Kinghorn AD. Rocaglamide, silvestrol and structurally related bioactive compounds from Aglaia species. Nat Prod Rep. 2014;31:924–39.
pubmed: 24788392 pmcid: 4091845 doi: 10.1039/C4NP00006D
Gupta SV, Sass EJ, Davis ME, Edwards RB, Lozanski G, Heerema NA, et al. Resistance to the translation initiation inhibitor silvestrol is mediated by ABCB1/P-glycoprotein overexpression in acute lymphoblastic leukemia cells. AAPS J. 2011;13:357–64.
pubmed: 21538216 pmcid: 3160166 doi: 10.1208/s12248-011-9276-7
Santagata S, Mendillo ML, Tang Y, Subramanian A, Perley CC, Roche SP, et al. Tight coordination of protein translation and HSF1 activation supports the anabolic malignant state. Science. 2013. https://doi.org/10.1126/science.1238303 .
Tse KF, Allebach J, Levis M, Smith BD, Bohmer FD, Small D. Inhibition of the transforming activity of FLT3 internal tandem duplication mutants from AML patients by a tyrosine kinase inhibitor. Leukemia 2002;16:2027–36.
pubmed: 12357354 doi: 10.1038/sj.leu.2402674
Zhang W, Gao C, Konopleva M, Chen Y, Jacamo RO, Borthakur G et al. Reversal of acquired drug resistance in FLT3-mutated acute myeloid leukemia cells via distinct drug combination strategies. Clin Cancer Res. 2014. https://doi.org/10.1158/1078-0432.CCR-13-2052 .
Zhang W, Ly C, Ishizawa J, Mu H, Ruvolo V, Shacham S, et al. Combinatorial targeting of XPO1 and FLT3 exerts synergistic anti-leukemia effects through induction of differentiation and apoptosis in FLT3-mutated acute myeloid leukemias: from concept to clinical trial. Haematologica 2018;103:1642–53.
pubmed: 29773601 pmcid: 6165819 doi: 10.3324/haematol.2017.185082
Fiskus W, Sharma S, Saha S, Shah B, Devaraj SG, Sun B, et al. Pre-clinical efficacy of combined therapy with novel β-catenin antagonist BC2059 and histone deacetylase inhibitor against AML cells. Leukemia 2015;29:1267–78.
pubmed: 25482131 doi: 10.1038/leu.2014.340
Ishizawa J, Kojima K, Chachad D, Ruvolo P, Ruvolo V, Jacamo RO et al. ATF4 induction through an atypical integrated stress response to ONC201 triggers p53-independent apoptosis in hematological malignancies. Sci Signal. 2016. https://doi.org/10.1126/scisignal.aac4380 .
Zhang W, Borthakur G, Gao C, Chen Y, Mu H, Ruvolo VR et al. Cancer Res. 2016;7:1528–37.
Nii T, Prabhu VV, Ruvolo V, Madhukar N, Zhao R, Mu H, et al. Imipridone ONC212 activates orphan G protein-coupled receptor GPR132 and integrated stress response in acute myeloid leukemia. Leukemia 2019;33:2805–16.
pubmed: 31127149 pmcid: 6874902 doi: 10.1038/s41375-019-0491-z
Ramaswamy S, Tamayo P, Rifkin R, Mukherjee S, Yeang CH, Angelo M, et al. Multiclass cancer diagnosis using tumor gene expression signatures. Proc Natl Acad Sci 2001;18:15149–54.
doi: 10.1073/pnas.211566398
Sandro ML, Santagata S, Koeva M, Bell GW, Hu R, Tamimi RM, et al. HSF1 drives a transcriptional program distinct from heat shock to support highly malignant human cancers. Cell 2012;150:549–62.
doi: 10.1016/j.cell.2012.06.031
Santagata S, Hu R, Lin NU, Mendillo ML, Collins LC, Hankinson SE, et al. High levels of nuclear heat-shock factor 1 (HSF1) are associated with poor prognosis in breast cancer. Proc Natl Acad Sci 2011;108:18378–83.
pubmed: 22042860 pmcid: 3215027 doi: 10.1073/pnas.1115031108
Gaglia G, Rashid R, Yapp C, Joshi GN, Li CG, Lindquist SL, et al. HSF1 phase transition mediates stress adaptation and cell fate decisions. Nat Cell Biol. 2020;22:151–8.
pubmed: 32015439 pmcid: 7135912 doi: 10.1038/s41556-019-0458-3
Carpenter RL, Paw I, Dewhirst MW, Lo H-W. Akt phosphorylates and activates HSF-1 independent of heat shock, leading to Slug overexpression and epithelial-mesenchymal transition (EMT) of HER2-overexpressing breast cancer cells. Oncogene 2015;34:546–57.
pubmed: 24469056 doi: 10.1038/onc.2013.582
Tang Z, Dai S, He Y, Doty RA, Shultz LD, Sampson SB. MEK guards proteome stability and inhibits tumor-suppressive amyloidogenesis via HSF1. Cell. 2015;160:729–44.
pubmed: 25679764 pmcid: 4564124 doi: 10.1016/j.cell.2015.01.028
Naidu SD, Sutherland C, Zhang Y, Risco A, de la Vega L, Caunt CJ, et al. Heat shock factor 1 is a substrate for p38 mitogen-activated protein kinases. Mol Cell Biol. 2016;36:2403–17.
doi: 10.1128/MCB.00292-16
Chou SD, Prince T1, Gong J, Calderwood SK. mTOR is essential for the proteotoxic stress response, HSF1 activation and heat shock protein synthesis. PLoS ONE. 2012. https://doi.org/10.1371/journal.pone.0039679 .
Zhang W, Konopleva M, Shi Y, McQueen T, Harris D, Ling X, et al. Mutant FLT3: a direct target of sorafenib in acute myelogenous leukemia. J Natl Cancer Inst. 2008;100:184–98.
pubmed: 18230792 doi: 10.1093/jnci/djm328
Tauber D, Tauber T, Khong A, Van Treeck B, Pelletier J, Roy P. Modulation of RNA condensation by the DEAD-Box protein eIF4A. Cell. 2020;180:411–26.
pubmed: 31928844 pmcid: 7194247 doi: 10.1016/j.cell.2019.12.031
Schetelig J, Rollig C, Kayser S, Stoelzel F, Schaefer-Eckart K, Haenel M, et al. Validation of the ELN2017 classification for AML with intermediate risk cytogenetics with or without NPM1-mutations and high or low ratio FLT3-ITDs. Blood. 2017;130:2694.
Döhner H, Estey E, Grimwade D, Amadori S, Appelbaum FR, Buchner T, et al. Diagnosis and management of AML in adults:2017 ELN recommendations from an international expert panel. Blood 2017;129:424–47.
pubmed: 27895058 pmcid: 5291965 doi: 10.1182/blood-2016-08-733196
Krönke J, Bullinger L, Teleanu V, Tschürtz F, Gaidzik VI, Khün MWM, et al. Clonal evolution in relapsed NPM1-mutated acute myeloid leukemia. Blood 2013;122:100–8.
pubmed: 23704090 doi: 10.1182/blood-2013-01-479188
Stone RM, Mandrekar SJ, Sanford BL, Laumann K, Geyer S, Bloomfield CD, et al. Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation. N Engl J Med. 2017; 377:454–64.
Perl AE, Martinelli G, Cortes JE, Neubauer A, Berman E, Paolini S, et al. Gilteritinib or chemotherapy for relapsed or refractory FLT3-mutated AML. N. Engl J Med 2019;381:1728–40.
pubmed: 31665578 doi: 10.1056/NEJMoa1902688
Smith CC, Wang Q, Chin CS, Salerno S, Damon LE, Levis MJ, et al. Validation of ITD mutations in FLT3 as a therapeutic target in human acute myeloid leukaemia. Nature 2012;485:260–3.
pubmed: 22504184 pmcid: 3390926 doi: 10.1038/nature11016
Heidel F, Solem FK, Breitenbuecher F, Lipka DB, Kasper S, Thiede MH, et al. Clinical resistance to the kinase inhibitor PKC412 in acute myeloid leukemia by mutation of Asn-676 in the FLT3 tyrosine kinase domain. Blood 2006;107:293–300.
pubmed: 16150941 doi: 10.1182/blood-2005-06-2469
Moore AS, Faisal A, Gonzalez de Castro D, Bavetsias V, Sun C, Atrash B, et al. Selective FLT3 inhibition of FLT3-ITD+ acute myeloid leukaemia resulting in secondary D835Y mutation: a model for emerging clinical resistance patterns. Leukemia 2012;26:1462–70.
pubmed: 22354205 pmcid: 3523391 doi: 10.1038/leu.2012.52
Reikvam H, Hatfield KJ, Ersvær E, Hovland R, Skavland S, Gjertsen BJ, et al. Expression profile of heat shock proteins in acute myeloid leukaemia patients reveals a distinct signature strongly associated with FLT3 mutation status—consequences and potentials for pharmacological intervention. Br J Haematol 2011;156:468–80.
pubmed: 22150087 doi: 10.1111/j.1365-2141.2011.08960.x
Zhang X, Bi C, Lu T, Zhang W, Yue T, Wang C et al. Targeting translation initiation by synthetic rocaglates for treating MYC-driven lymphomas. Leukemia. 2019. https://doi.org/10.1038/s41375-019-0503-z .
Chu J, Zhang W, Cencic R, Devine WG, Beglov D, Henkel T, et al. Amidino-rocaglates: a potent class of eIF4A inhibitors. Cell Chem Biol 2019;26:1586–93.
pubmed: 31519508 pmcid: 6874763 doi: 10.1016/j.chembiol.2019.08.008
Chan K, Robert F, Oertlin C, Kapeller-Libermann D, Avizonis D2, Gutierrez J, et al. eIF4A supports an oncogenic translation program in pancreatic ductal adenocarcinoma. Nat Commun. 2019;10:5151.
pubmed: 31723131 pmcid: 6853918 doi: 10.1038/s41467-019-13086-5
Spicka I, Ocio EM, Oakervee HE, Greil R, Banh RH, Huang SY, et al. Randomized phase III study (ADMYRE) of plitidepsin in combination with dexamethasone vs. dexamethasone alone in patients with relapsed/refractory multiple myeloma. Ann Hematol. 2019;98:2139–50.
pubmed: 31240472 pmcid: 6700046 doi: 10.1007/s00277-019-03739-2

Auteurs

Yuki Nishida (Y)

Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

Ran Zhao (R)

Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

Lauren E Heese (LE)

Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

Hiroki Akiyama (H)

Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

Shreya Patel (S)

Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

Alex M Jaeger (AM)

Whitehead Institute for Biomedical Research, Cambridge, MA, USA.

Rodrigo O Jacamo (RO)

Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

Kensuke Kojima (K)

Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
Department of Hematology, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan.

Man Chun John Ma (MCJ)

Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

Vivian R Ruvolo (VR)

Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

Dhruv Chachad (D)

Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

William Devine (W)

Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA, USA.

Susan Lindquist (S)

Whitehead Institute for Biomedical Research, Cambridge, MA, USA.

R Eric Davis (RE)

Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

John A Porco (JA)

Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA, USA.

Luke Whitesell (L)

Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.

Michael Andreeff (M)

Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. mandreef@mdanderson.org.

Jo Ishizawa (J)

Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. jishizawa@mdanderson.org.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH