Cancer immunotherapy: it's time to better predict patients' response.


Journal

British journal of cancer
ISSN: 1532-1827
Titre abrégé: Br J Cancer
Pays: England
ID NLM: 0370635

Informations de publication

Date de publication:
09 2021
Historique:
received: 09 11 2020
accepted: 13 04 2021
revised: 30 03 2021
pubmed: 12 6 2021
medline: 18 12 2021
entrez: 11 6 2021
Statut: ppublish

Résumé

In less than a decade, half a dozen immune checkpoint inhibitors have been approved and are currently revolutionising the treatment of many cancer (sub)types. With the clinical evaluation of novel delivery approaches (e.g. oncolytic viruses, cancer vaccines, natural killer cell-mediated cytotoxicity) and combination therapies (e.g. chemo/radio-immunotherapy) as well as the emergence of novel promising targets (e.g. TIGIT, LAG-3, TIM-3), the 'immunotherapy tsunami' is not about to end anytime soon. However, this enthusiasm in the field is somewhat tempered by both the relatively low percentage (<15%) of patients who display an effective anti-cancer immune response and the inability to accurately identify them. Recently, several existing or acquired features/parameters have been shown to impact the efficacy of immune checkpoint inhibitors. In the present review, we critically discuss current knowledge regarding predictive biomarkers for checkpoint inhibitor-based immunotherapy, highlight the missing/unclear links and emphasise the importance of characterising each neoplasm and its microenvironment in order to better guide the course of treatment.

Identifiants

pubmed: 34112949
doi: 10.1038/s41416-021-01413-x
pii: 10.1038/s41416-021-01413-x
pmc: PMC8476530
doi:

Substances chimiques

Cancer Vaccines 0
Immune Checkpoint Inhibitors 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

927-938

Informations de copyright

© 2021. The Author(s), under exclusive licence to Cancer Research UK.

Références

Dobosz, P. & Dzieciatkowski, T. The intriguing history of cancer immunotherapy. Front. Immunol. 10, 2965 (2019).
pubmed: 31921205 pmcid: 6928196 doi: 10.3389/fimmu.2019.02965
Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).
pubmed: 20525992 pmcid: 3549297 doi: 10.1056/NEJMoa1003466
Mazzarella, L. et al. The evolving landscape of ‘next-generation’ immune checkpoint inhibitors: a review. Eur. J. Cancer 117, 14–31 (2019).
pubmed: 31229946 doi: 10.1016/j.ejca.2019.04.035
Haslam, A. & Prasad, V. Estimation of the percentage of US patients with cancer who are eligible for and respond to checkpoint inhibitor immunotherapy drugs. JAMA Netw. Open 2, e192535 (2019).
pubmed: 31050774 pmcid: 6503493 doi: 10.1001/jamanetworkopen.2019.2535
Liu, X. et al. Association of PD-L1 expression status with the efficacy of PD-1/PD-L1 inhibitors and overall survival in solid tumours: a systematic review and meta-analysis. Int. J. Cancer 147, 116–127 (2020).
pubmed: 31633798 doi: 10.1002/ijc.32744
Weber, J. S. et al. Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 16, 375–384 (2015).
pubmed: 25795410 doi: 10.1016/S1470-2045(15)70076-8
Hodi, F. S. et al. Nivolumab plus ipilimumab or nivolumab alone versus ipilimumab alone in advanced melanoma (CheckMate 067): 4-year outcomes of a multicentre, randomised, phase 3 trial. Lancet Oncol. 19, 1480–1492 (2018).
pubmed: 30361170 doi: 10.1016/S1470-2045(18)30700-9
Horn, L. et al. Nivolumab versus docetaxel in previously treated patients with advanced non-small-cell lung cancer: two-year outcomes from two randomized, open-label, phase iii trials (CheckMate 017 and CheckMate 057). J. Clin. Oncol. 35, 3924–3933 (2017).
pubmed: 29023213 pmcid: 6075826 doi: 10.1200/JCO.2017.74.3062
Wu, Y. L. et al. Nivolumab versus docetaxel in a predominantly chinese patient population with previously treated advanced NSCLC: CheckMate 078 randomized phase III clinical trial. J. Thorac. Oncol. 14, 867–875 (2019).
pubmed: 30659987 doi: 10.1016/j.jtho.2019.01.006
Ferris, R. L. et al. Nivolumab vs investigator’s choice in recurrent or metastatic squamous cell carcinoma of the head and neck: 2-year long-term survival update of CheckMate 141 with analyses by tumor PD-L1 expression. Oral Oncol. 81, 45–51 (2018).
pubmed: 29884413 pmcid: 6563923 doi: 10.1016/j.oraloncology.2018.04.008
Davis, A. A. & Patel, V. G. The role of PD-L1 expression as a predictive biomarker: an analysis of all US Food and Drug Administration (FDA) approvals of immune checkpoint inhibitors. J, Immunother, Cancer 7, 278 (2019).
doi: 10.1186/s40425-019-0768-9
Jiang, Y. & Zhan, H. Communication between EMT and PD-L1 signaling: new insights into tumor immune evasion. Cancer Lett. 468, 72–81 (2020).
pubmed: 31605776 doi: 10.1016/j.canlet.2019.10.013
Patel, S. P. & Kurzrock, R. PD-L1 expression as a predictive biomarker in cancer immunotherapy. Mol. Cancer Ther. 14, 847–856 (2015).
pubmed: 25695955 doi: 10.1158/1535-7163.MCT-14-0983
Herbst, R. S. et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515, 563–567 (2014).
pubmed: 25428504 pmcid: 4836193 doi: 10.1038/nature14011
Teng, M. W., Ngiow, S. F., Ribas, A. & Smyth, M. J. Classifying cancers based on T-cell infiltration and PD-L1. Cancer Res. 75, 2139–2145 (2015).
pubmed: 25977340 pmcid: 4452411 doi: 10.1158/0008-5472.CAN-15-0255
Passiglia, F. et al. PD-L1 expression as predictive biomarker in patients with NSCLC: a pooled analysis. Oncotarget 7, 19738–19747 (2016).
pubmed: 26918451 pmcid: 4991415 doi: 10.18632/oncotarget.7582
Xu, Y. et al. The association of PD-L1 expression with the efficacy of anti-PD-1/PD-L1 immunotherapy and survival of non-small cell lung cancer patients: a meta-analysis of randomized controlled trials. Transl. Lung Cancer Res. 8, 413–428 (2019).
pubmed: 31555516 pmcid: 6749123 doi: 10.21037/tlcr.2019.08.09
Jreige, M. et al. (18)F-FDG PET metabolic-to-morphological volume ratio predicts PD-L1 tumour expression and response to PD-1 blockade in non-small-cell lung cancer. Eur. J. Nucl. Med. Mol. Imaging 46, 1859–1868 (2019).
pubmed: 31214790 doi: 10.1007/s00259-019-04348-x
Gonzalez-Ericsson, P. I. et al. The path to a better biomarker: application of a risk management framework for the implementation of PD-L1 and TILs as immuno-oncology biomarkers in breast cancer clinical trials and daily practice. J. Pathol. 250, 667–684 (2020).
pubmed: 32129476 doi: 10.1002/path.5406
Allen, P. M. et al. Identification of the T-cell and Ia contact residues of a T-cell antigenic epitope. Nature 327, 713–715 (1987).
pubmed: 2439915 doi: 10.1038/327713a0
Ward, J. P., Gubin, M. M. & Schreiber, R. D. The role of neoantigens in naturally occurring and therapeutically induced immune responses to cancer. Adv. Immunol. 130, 25–74 (2016).
pubmed: 26922999 pmcid: 6087548 doi: 10.1016/bs.ai.2016.01.001
Smith, C. C. et al. Alternative tumour-specific antigens. Nat. Rev. Cancer 19, 465–478 (2019).
pubmed: 31278396 pmcid: 6874891 doi: 10.1038/s41568-019-0162-4
Rizvi, N. A. et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348, 124–128 (2015).
pubmed: 25765070 pmcid: 4993154 doi: 10.1126/science.aaa1348
Rooney, M. S., Shukla, S. A., Wu, C. J., Getz, G. & Hacohen, N. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 160, 48–61 (2015).
pubmed: 25594174 pmcid: 4856474 doi: 10.1016/j.cell.2014.12.033
Snyder, A. et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N. Engl. J. Med. 371, 2189–2199 (2014).
pubmed: 25409260 pmcid: 4315319 doi: 10.1056/NEJMoa1406498
Hellmann, M. D. et al. Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden. N. Engl. J. Med. 378, 2093–2104 (2018).
pubmed: 29658845 pmcid: 7193684 doi: 10.1056/NEJMoa1801946
Rosenberg, J. E. et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet 387, 1909–1920 (2016).
pubmed: 26952546 pmcid: 5480242 doi: 10.1016/S0140-6736(16)00561-4
Wu, Y. et al. The predictive value of tumor mutation burden on efficacy of immune checkpoint inhibitors in cancers: a systematic review and meta-analysis. Front. Oncol. 9, 1161 (2019).
pubmed: 31750249 pmcid: 6848266 doi: 10.3389/fonc.2019.01161
Samstein, R. M. et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat. Genet. 51, 202–206 (2019).
pubmed: 30643254 pmcid: 6365097 doi: 10.1038/s41588-018-0312-8
Marabelle, A. et al. Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet Oncol. 21, 1353–1365 (2020).
pubmed: 32919526 doi: 10.1016/S1470-2045(20)30445-9
Yarchoan, M., Hopkins, A. & Jaffee, E. M. Tumor mutational burden and response rate to PD-1 inhibition. N. Engl. J. Med. 377, 2500–2501 (2017).
pubmed: 29262275 pmcid: 6549688 doi: 10.1056/NEJMc1713444
Chan, T. A. et al. Development of tumor mutation burden as an immunotherapy biomarker: utility for the oncology clinic. Ann. Oncol. 30, 44–56 (2019).
pubmed: 30395155 doi: 10.1093/annonc/mdy495
Gandara, D. R. et al. Blood-based tumor mutational burden as a predictor of clinical benefit in non-small-cell lung cancer patients treated with atezolizumab. Nat. Med. 24, 1441–1448 (2018).
pubmed: 30082870 doi: 10.1038/s41591-018-0134-3
Yu, H. et al. Correlation of PD-L1 expression with tumor mutation burden and gene signatures for prognosis in early-stage squamous cell lung carcinoma. J. Thorac. Oncol. 14, 25–36 (2019).
pubmed: 30253973 doi: 10.1016/j.jtho.2018.09.006
Rizvi, H. et al. Molecular determinants of response to anti-programmed cell death (PD)-1 and anti-programmed death-ligand 1 (PD-L1) blockade in patients with non-small-cell lung cancer profiled with targeted next-generation sequencing. J. Clin. Oncol. 36, 633–641 (2018).
pubmed: 29337640 pmcid: 6075848 doi: 10.1200/JCO.2017.75.3384
Sholl, L. M. et al. The promises and challenges of tumor mutation burden as an immunotherapy biomarker: a perspective from the international association for the study of lung cancer pathology committee. J. Thorac. Oncol. 15, 1409–1424 (2020).
pubmed: 32522712 pmcid: 8363213 doi: 10.1016/j.jtho.2020.05.019
Jardim, D. L., Goodman, A., de Melo Gagliato, D., Kurzrock, R. The challenges of tumor mutational burden as an immunotherapy biomarker. Cancer Cell 39, 154–173 (2021).
pubmed: 33125859 doi: 10.1016/j.ccell.2020.10.001
Li, G. M. Mechanisms and functions of DNA mismatch repair. Cell Res. 18, 85–98 (2008).
pubmed: 18157157 doi: 10.1038/cr.2007.115
Buhard, O. et al. Multipopulation analysis of polymorphisms in five mononucleotide repeats used to determine the microsatellite instability status of human tumors. J. Clin. Oncol. 24, 241–251 (2006).
pubmed: 16330668 doi: 10.1200/JCO.2005.02.7227
Le, D. T. et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357, 409–413 (2017).
pubmed: 28596308 pmcid: 5576142 doi: 10.1126/science.aan6733
Le, D. T. et al. PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 372, 2509–2520 (2015).
pubmed: 26028255 pmcid: 4481136 doi: 10.1056/NEJMoa1500596
Cortes-Ciriano, I., Lee, S., Park, W. Y., Kim, T. M. & Park, P. J. A molecular portrait of microsatellite instability across multiple cancers. Nat. Commun. 8, 15180 (2017).
pubmed: 28585546 pmcid: 5467167 doi: 10.1038/ncomms15180
Chalmers, Z. R. et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. 9, 34 (2017).
pubmed: 28420421 pmcid: 5395719 doi: 10.1186/s13073-017-0424-2
Mehnert, J. M. et al. Immune activation and response to pembrolizumab in POLE-mutant endometrial cancer. J. Clin. Invest. 126, 2334–2340 (2016).
pubmed: 27159395 pmcid: 4887167 doi: 10.1172/JCI84940
Gong, J., Wang, C., Lee, P. P., Chu, P. & Fakih, M. Response to PD-1 blockade in microsatellite stable metastatic colorectal cancer harboring a POLE mutation. J. Natl. Compr. Cancer Netw. 15, 142–147 (2017).
doi: 10.6004/jnccn.2017.0016
Goodman, A. M., Sokol, E. S., Frampton, G. M., Lippman, S. M. & Kurzrock, R. Microsatellite-stable tumors with high mutational burden benefit from immunotherapy. Cancer Immunol. Res. 7, 1570–1573 (2019).
pubmed: 31405947 pmcid: 6774837 doi: 10.1158/2326-6066.CIR-19-0149
Gettinger, S. et al. Impaired HLA class I antigen processing and presentation as a mechanism of acquired resistance to immune checkpoint inhibitors in lung cancer. Cancer Discov. 7, 1420–1435 (2017).
pubmed: 29025772 pmcid: 5718941 doi: 10.1158/2159-8290.CD-17-0593
Chowell, D. et al. Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy. Science 359, 582–587 (2018).
pubmed: 29217585 doi: 10.1126/science.aao4572
McGranahan, N. et al. Allele-specific HLA loss and immune escape in lung cancer evolution. Cell 171, 1259–1271.e1211 (2017).
pubmed: 29107330 pmcid: 5720478 doi: 10.1016/j.cell.2017.10.001
Chowell, D. et al. Evolutionary divergence of HLA class I genotype impacts efficacy of cancer immunotherapy. Nat. Med. 25, 1715–1720 (2019).
pubmed: 31700181 pmcid: 7938381 doi: 10.1038/s41591-019-0639-4
Rodig, S. J. et al. MHC proteins confer differential sensitivity to CTLA-4 and PD-1 blockade in untreated metastatic melanoma. Sci. Transl. Med. 10, eaar3342 (2018).
pubmed: 30021886 doi: 10.1126/scitranslmed.aar3342
Negrao, M. V. et al. PD-L1 expression, tumor mutational burden, and cancer gene mutations are stronger predictors of benefit from immune checkpoint blockade than HLA class I genotype in non-small cell lung cancer. J. Thorac. Oncol. 14, 1021–1031 (2019).
pubmed: 30780001 doi: 10.1016/j.jtho.2019.02.008
Spranger, S. et al. Up-regulation of PD-L1, IDO, and T(regs) in the melanoma tumor microenvironment is driven by CD8(+) T cells. Sci. Transl. Med. 5, 200ra116 (2013).
pubmed: 23986400 pmcid: 4136707 doi: 10.1126/scitranslmed.3006504
Garcia-Diaz, A. et al. Interferon receptor signaling pathways regulating PD-L1 and PD-L2 expression. Cell Rep. 19, 1189–1201 (2017).
pubmed: 28494868 pmcid: 6420824 doi: 10.1016/j.celrep.2017.04.031
Zaretsky, J. M. et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N. Engl. J. Med. 375, 819–829 (2016).
pubmed: 27433843 pmcid: 5007206 doi: 10.1056/NEJMoa1604958
Gao, J. et al. Loss of IFN-gamma pathway genes in tumor cells as a mechanism of resistance to anti-CTLA-4 therapy. Cell 167, 397–404 e399 (2016).
pubmed: 27667683 pmcid: 5088716 doi: 10.1016/j.cell.2016.08.069
Shin, D. S. et al. Primary resistance to PD-1 blockade mediated by JAK1/2 mutations. Cancer Discov. 7, 188–201 (2017).
pubmed: 27903500 doi: 10.1158/2159-8290.CD-16-1223
Pai, C. S. et al. Clonal deletion of tumor-specific T cells by interferon-gamma confers therapeutic resistance to combination immune checkpoint blockade. Immunity 50, 477–492 e478 (2019).
pubmed: 30737146 pmcid: 6886475 doi: 10.1016/j.immuni.2019.01.006
Ni, L. & Lu, J. Interferon gamma in cancer immunotherapy. Cancer Med. 7, 4509–4516 (2018).
pubmed: 30039553 pmcid: 6143921 doi: 10.1002/cam4.1700
Brown, Z. J. et al. Indoleamine 2,3-dioxygenase provides adaptive resistance to immune checkpoint inhibitors in hepatocellular carcinoma. Cancer Immunol. Immunother. 67, 1305–1315 (2018).
pubmed: 29959458 pmcid: 6085109 doi: 10.1007/s00262-018-2190-4
Long, G. V. et al. Epacadostat plus pembrolizumab versus placebo plus pembrolizumab in patients with unresectable or metastatic melanoma (ECHO-301/KEYNOTE-252): a phase 3, randomised, double-blind study. Lancet Oncol. 20, 1083–1097 (2019).
pubmed: 31221619 doi: 10.1016/S1470-2045(19)30274-8
Tumeh, P. C. et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515, 568–571 (2014).
pubmed: 25428505 pmcid: 4246418 doi: 10.1038/nature13954
Mariathasan, S. et al. TGFbeta attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554, 544–548 (2018).
pubmed: 29443960 pmcid: 6028240 doi: 10.1038/nature25501
Uryvaev, A., Passhak, M., Hershkovits, D., Sabo, E. & Bar-Sela, G. The role of tumor-infiltrating lymphocytes (TILs) as a predictive biomarker of response to anti-PD1 therapy in patients with metastatic non-small cell lung cancer or metastatic melanoma. Med. Oncol. 35, 25 (2018).
pubmed: 29388007 doi: 10.1007/s12032-018-1080-0
Galon, J. et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313, 1960–1964 (2006).
pubmed: 17008531 doi: 10.1126/science.1129139
Mlecnik, B. et al. Comprehensive intrametastatic immune quantification and major impact of immunoscore on survival. J. Natl Cancer Inst. 110, https://doi.org/10.1093/jnci/djx123 (2018).
Kirilovsky, A. et al. Rational bases for the use of the Immunoscore in routine clinical settings as a prognostic and predictive biomarker in cancer patients. Int Immunol 28, 373–382 (2016).
pubmed: 27121213 pmcid: 4986234 doi: 10.1093/intimm/dxw021
Galon, J. et al. Cancer classification using the Immunoscore: a worldwide task force. J. Transl. Med. 10, 205 (2012).
pubmed: 23034130 pmcid: 3554496 doi: 10.1186/1479-5876-10-205
Angell, H. & Galon, J. From the immune contexture to the Immunoscore: the role of prognostic and predictive immune markers in cancer. Curr. Opin. Immunol. 25, 261–267 (2013).
pubmed: 23579076 doi: 10.1016/j.coi.2013.03.004
Galon, J. et al. Towards the introduction of the ‘Immunoscore’ in the classification of malignant tumours. J. Pathol. 232, 199–209 (2014).
pubmed: 24122236 doi: 10.1002/path.4287
Emens, L. A. & Middleton, G. The interplay of immunotherapy and chemotherapy: harnessing potential synergies. Cancer Immunol. Res. 3, 436–443 (2015).
pubmed: 25941355 pmcid: 5012642 doi: 10.1158/2326-6066.CIR-15-0064
Park, B., Yee, C. & Lee, K. M. The effect of radiation on the immune response to cancers. Int. J. Mol. Sci. 15, 927–943 (2014).
pubmed: 24434638 pmcid: 3907847 doi: 10.3390/ijms15010927
Ghiringhelli, F. et al. Metronomic cyclophosphamide regimen selectively depletes CD4+CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol. Immunother. 56, 641–648 (2007).
pubmed: 16960692 doi: 10.1007/s00262-006-0225-8
Suzuki, E., Kapoor, V., Jassar, A. S., Kaiser, L. R. & Albelda, S. M. Gemcitabine selectively eliminates splenic Gr-1+/CD11b+ myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity. Clin. Cancer Res. 11, 6713–6721 (2005).
pubmed: 16166452 doi: 10.1158/1078-0432.CCR-05-0883
Murciano-Goroff, Y. R., Warner, A. B. & Wolchok, J. D. The future of cancer immunotherapy: microenvironment-targeting combinations. Cell Res. 30, 507–519 (2020).
pubmed: 32467593 pmcid: 7264181 doi: 10.1038/s41422-020-0337-2
Van Der Kraak, L. et al. 5-Fluorouracil upregulates cell surface B7-H1 (PD-L1) expression in gastrointestinal cancers. J. Immunother. Cancer 4, 65 (2016).
doi: 10.1186/s40425-016-0163-8
McDaniel, A. S. et al. Expression of PDL1 (B7-H1) before and after neoadjuvant chemotherapy in urothelial carcinoma. Eur. Urol. Focus 1, 265–268 (2016).
pubmed: 28723397 doi: 10.1016/j.euf.2015.03.004
Zemek, R. M. et al. Sensitizing the tumor microenvironment to immune checkpoint therapy. Front. Immunol. 11, 223 (2020).
pubmed: 32133005 pmcid: 7040078 doi: 10.3389/fimmu.2020.00223
Ghoneim, H. E. et al. De novo epigenetic programs inhibit PD-1 blockade-mediated T cell rejuvenation. Cell 170, 142–157 e119 (2017).
pubmed: 28648661 pmcid: 5568784 doi: 10.1016/j.cell.2017.06.007
Pauken, K. E. et al. Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science 354, 1160–1165 (2016).
pubmed: 27789795 pmcid: 5484795 doi: 10.1126/science.aaf2807
Peng, D. et al. Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy. Nature 527, 249–253 (2015).
pubmed: 26503055 pmcid: 4779053 doi: 10.1038/nature15520
Goswami, S. et al. Modulation of EZH2 expression in T cells improves efficacy of anti-CTLA-4 therapy. J. Clin. Invest. 128, 3813–3818 (2018).
pubmed: 29905573 pmcid: 6118570 doi: 10.1172/JCI99760
Xiao, G. et al. EZH2 negatively regulates PD-L1 expression in hepatocellular carcinoma. J. Immunother. Cancer 7, 300 (2019).
pubmed: 31727135 pmcid: 6854886 doi: 10.1186/s40425-019-0784-9
Wu, H. X. et al. Alteration in TET1 as potential biomarker for immune checkpoint blockade in multiple cancers. J. Immunother. Cancer 7, 264 (2019).
pubmed: 31623662 pmcid: 6798429 doi: 10.1186/s40425-019-0737-3
Okamura, R. et al. ARID1A alterations function as a biomarker for longer progression-free survival after anti-PD-1/PD-L1 immunotherapy. J. Immunother. Cancer 8, e000438 (2020).
pubmed: 32111729 pmcid: 7057434 doi: 10.1136/jitc-2019-000438
Chiappinelli, K. B., Zahnow, C. A., Ahuja, N. & Baylin, S. B. Combining epigenetic and immunotherapy to combat cancer. Cancer Res. 76, 1683–1689 (2016).
pubmed: 26988985 pmcid: 4873370 doi: 10.1158/0008-5472.CAN-15-2125
Terranova-Barberio, M. et al. HDAC inhibition potentiates immunotherapy in triple negative breast cancer. Oncotarget 8, 114156–114172 (2017).
pubmed: 29371976 pmcid: 5768393 doi: 10.18632/oncotarget.23169
Geva-Zatorsky, N. et al. Mining the human gut microbiota for immunomodulatory organisms. Cell 168, 928–943 e911 (2017).
pubmed: 28215708 pmcid: 7774263 doi: 10.1016/j.cell.2017.01.022
Vetizou, M. et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350, 1079–1084 (2015).
pubmed: 26541610 pmcid: 4721659 doi: 10.1126/science.aad1329
Sivan, A. et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350, 1084–1089 (2015).
pubmed: 26541606 pmcid: 4873287 doi: 10.1126/science.aac4255
Routy, B. et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359, 91–97 (2018).
doi: 10.1126/science.aan3706 pubmed: 29097494
Baruch, E. N. et al. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science 371, 602–609 (2021).
pubmed: 33303685 doi: 10.1126/science.abb5920
Chaput, N. et al. Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab. Ann. Oncol. 28, 1368–1379 (2017).
pubmed: 28368458 doi: 10.1093/annonc/mdx108
Matson, V. et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science 359, 104–108 (2018).
pubmed: 29302014 pmcid: 6707353 doi: 10.1126/science.aao3290
Jin, Y. et al. The diversity of gut microbiome is associated with favorable responses to anti-programmed death 1 immunotherapy in Chinese patients with NSCLC. J. Thorac. Oncol. 14, 1378–1389 (2019).
pubmed: 31026576 doi: 10.1016/j.jtho.2019.04.007
Zitvogel, L., Ma, Y., Raoult, D., Kroemer, G. & Gajewski, T. F. The microbiome in cancer immunotherapy: diagnostic tools and therapeutic strategies. Science 359, 1366–1370 (2018).
pubmed: 29567708 doi: 10.1126/science.aar6918
Inamura, K. Roles of microbiota in response to cancer immunotherapy. Semin. Cancer Biol. 65, 164–175 (2020).
pubmed: 31911189 doi: 10.1016/j.semcancer.2019.12.026
Weide, B. et al. Baseline biomarkers for outcome of melanoma patients treated with pembrolizumab. Clin. Cancer Res. 22, 5487–5496 (2016).
pubmed: 27185375 pmcid: 5572569 doi: 10.1158/1078-0432.CCR-16-0127
Heppt, M. V. et al. Prognostic factors and outcomes in metastatic uveal melanoma treated with programmed cell death-1 or combined PD-1/cytotoxic T-lymphocyte antigen-4 inhibition. Eur. J. Cancer 82, 56–65 (2017).
pubmed: 28648699 doi: 10.1016/j.ejca.2017.05.038
Martens, A. et al. Baseline peripheral blood biomarkers associated with clinical outcome of advanced melanoma patients treated with ipilimumab. Clin. Cancer Res. 22, 2908–2918 (2016).
pubmed: 26787752 pmcid: 5770142 doi: 10.1158/1078-0432.CCR-15-2412
Shao, Y. et al. Prognostic value of pretreatment neutrophil-to-lymphocyte ratio in renal cell carcinoma: a systematic review and meta-analysis. BMC Urol. 20, 90 (2020).
pubmed: 32631294 pmcid: 7339475 doi: 10.1186/s12894-020-00665-8
Huang, A. C. et al. T-cell invigoration to tumour burden ratio associated with anti-PD-1 response. Nature 545, 60–65 (2017).
pubmed: 28397821 pmcid: 5554367 doi: 10.1038/nature22079
Wu, X. et al. Angiopoietin-2 as a biomarker and target for immune checkpoint therapy. Cancer Immunol. Res. 5, 17–28 (2017).
pubmed: 28003187 doi: 10.1158/2326-6066.CIR-16-0206
Turiello, R. et al. Serum CD73 is a prognostic factor in patients with metastatic melanoma and is associated with response to anti-PD-1 therapy. J. Immunother. Cancer 8, e001689 (2020).
pubmed: 33361405 pmcid: 7759961 doi: 10.1136/jitc-2020-001689
Morello, S. et al. Soluble CD73 as biomarker in patients with metastatic melanoma patients treated with nivolumab. J. Transl. Med. 15, 244 (2017).
pubmed: 29202855 pmcid: 5716054 doi: 10.1186/s12967-017-1348-8
Hannani, D. et al. Anticancer immunotherapy by CTLA-4 blockade: obligatory contribution of IL-2 receptors and negative prognostic impact of soluble CD25. Cell Res. 25, 208–224 (2015).
pubmed: 25582080 pmcid: 4650573 doi: 10.1038/cr.2015.3
Maccalli, C. et al. Soluble NKG2D ligands are biomarkers associated with the clinical outcome to immune checkpoint blockade therapy of metastatic melanoma patients. Oncoimmunology 6, e1323618 (2017).
pubmed: 28811958 pmcid: 5543847 doi: 10.1080/2162402X.2017.1323618
Maccalli, C. et al. Immunological markers and clinical outcome of advanced melanoma patients receiving ipilimumab plus fotemustine in the NIBIT-M1 study. Oncoimmunology 5, e1071007 (2016).
pubmed: 27057436 doi: 10.1080/2162402X.2015.1071007
Daassi, D., Mahoney, K. M. & Freeman, G. J. The importance of exosomal PDL1 in tumour immune evasion. Nat. Rev. Immunol. 20, 209–215 (2020).
pubmed: 31965064 doi: 10.1038/s41577-019-0264-y
Yin, Z. et al. Mechanisms underlying low-clinical responses to PD-1/PD-L1 blocking antibodies in immunotherapy of cancer: a key role of exosomal PD-L1. J. Immunother. Cancer 9, e001698 (2021).
pubmed: 33472857 doi: 10.1136/jitc-2020-001698 pmcid: 7818841
Chen, G. et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature 560, 382–386 (2018).
pubmed: 30089911 pmcid: 6095740 doi: 10.1038/s41586-018-0392-8
Lee, J. H. et al. Circulating tumour DNA predicts response to anti-PD1 antibodies in metastatic melanoma. Ann. Oncol. 28, 1130–1136 (2017).
pubmed: 28327969 doi: 10.1093/annonc/mdx026
Prelaj, A. et al. EPSILoN: a prognostic score using clinical and blood biomarkers in advanced non-small-cell lung cancer treated with immunotherapy. Clin. Lung Cancer 21, 365–377 e365 (2020).
pubmed: 32245624 doi: 10.1016/j.cllc.2019.11.017
Nowicki, T. S., Hu-Lieskovan, S. & Ribas, A. Mechanisms of resistance to PD-1 and PD-L1 blockade. Cancer J. 24, 47–53 (2018).
pubmed: 29360728 pmcid: 5785093 doi: 10.1097/PPO.0000000000000303
Sharma, P., Hu-Lieskovan, S., Wargo, J. A. & Ribas, A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168, 707–723 (2017).
pubmed: 28187290 pmcid: 5391692 doi: 10.1016/j.cell.2017.01.017
Groth, C. et al. Immunosuppression mediated by myeloid-derived suppressor cells (MDSCs) during tumour progression. Br. J. Cancer 120, 16–25 (2019).
pubmed: 30413826 doi: 10.1038/s41416-018-0333-1
Highfill, S. L. et al. Disruption of CXCR2-mediated MDSC tumor trafficking enhances anti-PD1 efficacy. Sci. Transl. Med. 6, 237ra267 (2014).
doi: 10.1126/scitranslmed.3007974
Arce Vargas, F. et al. Fc-optimized anti-CD25 depletes tumor-infiltrating regulatory T cells and synergizes with PD-1 blockade to eradicate established tumors. Immunity 46, 577–586 (2017).
pubmed: 28410988 pmcid: 5437702 doi: 10.1016/j.immuni.2017.03.013
Taylor, N. A. et al. Treg depletion potentiates checkpoint inhibition in claudin-low breast cancer. J. Clin. Invest. 127, 3472–3483 (2017).
pubmed: 28825599 pmcid: 5669567 doi: 10.1172/JCI90499
Bankhead, P. et al. QuPath: open source software for digital pathology image analysis. Sci. Rep. 7, 16878 (2017).
pubmed: 29203879 pmcid: 5715110 doi: 10.1038/s41598-017-17204-5
Spranger, S., Bao, R. & Gajewski, T. F. Melanoma-intrinsic beta-catenin signalling prevents anti-tumour immunity. Nature 523, 231–235 (2015).
doi: 10.1038/nature14404 pubmed: 25970248
Loi, S. et al. RAS/MAPK activation is associated with reduced tumor-infiltrating lymphocytes in triple-negative breast cancer: therapeutic cooperation between MEK and PD-1/PD-L1 immune checkpoint inhibitors. Clin. Cancer Res. 22, 1499–1509 (2016).
pubmed: 26515496 doi: 10.1158/1078-0432.CCR-15-1125
Liu, C. et al. BRAF inhibition increases tumor infiltration by T cells and enhances the antitumor activity of adoptive immunotherapy in mice. Clin. Cancer Res. 19, 393–403 (2013).
pubmed: 23204132 doi: 10.1158/1078-0432.CCR-12-1626
Koyama, S. et al. Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat. Commun. 7, 10501 (2016).
pubmed: 26883990 pmcid: 4757784 doi: 10.1038/ncomms10501
Gao, J. et al. VISTA is an inhibitory immune checkpoint that is increased after ipilimumab therapy in patients with prostate cancer. Nat. Med. 23, 551–555 (2017).
pubmed: 28346412 pmcid: 5466900 doi: 10.1038/nm.4308
Kakavand, H. et al. Negative immune checkpoint regulation by VISTA: a mechanism of acquired resistance to anti-PD-1 therapy in metastatic melanoma patients. Mod. Pathol. 30, 1666–1676 (2017).
pubmed: 28776578 doi: 10.1038/modpathol.2017.89
Lu, S. et al. Comparison of biomarker modalities for predicting response to PD-1/PD-L1 checkpoint blockade: a systematic review and meta-analysis. JAMA Oncol. 5, 1195–1204 (2019).
pubmed: 31318407 pmcid: 6646995 doi: 10.1001/jamaoncol.2019.1549
Vaidya, P. et al. Novel, non-invasive imaging approach to identify patients with advanced non-small cell lung cancer at risk of hyperprogressive disease with immune checkpoint blockade. J. Immunother. Cancer 8, e001343 (2020).
pubmed: 33051342 pmcid: 7555103 doi: 10.1136/jitc-2020-001343
Mo, Q., Li, R., Adeegbe, D. O., Peng, G. & Chan, K. S. Integrative multi-omics analysis of muscle-invasive bladder cancer identifies prognostic biomarkers for frontline chemotherapy and immunotherapy. Commun. Biol. 3, 784 (2020).
pubmed: 33335285 pmcid: 7746703 doi: 10.1038/s42003-020-01491-2
Linette, G. P. & Carreno, B. M. Tumor-infiltrating lymphocytes in the checkpoint inhibitor era. Curr. Hematol. Malig. Rep. 14, 286–291 (2019).
pubmed: 31187421 pmcid: 6642683 doi: 10.1007/s11899-019-00523-x

Auteurs

Charlotte Pilard (C)

Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium.

Marie Ancion (M)

Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium.

Philippe Delvenne (P)

Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium.
Department of Pathology, University Hospital of Liege, Liege, Belgium.

Guy Jerusalem (G)

Department of Medical Oncology, University Hospital of Liege, Liege, Belgium.

Pascale Hubert (P)

Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium.

Michael Herfs (M)

Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium. M.Herfs@uliege.be.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH