LD-transpeptidases: the great unknown among the peptidoglycan cross-linkers.


Journal

The FEBS journal
ISSN: 1742-4658
Titre abrégé: FEBS J
Pays: England
ID NLM: 101229646

Informations de publication

Date de publication:
08 2022
Historique:
revised: 05 05 2021
received: 20 02 2021
accepted: 09 06 2021
pubmed: 11 6 2021
medline: 19 8 2022
entrez: 10 6 2021
Statut: ppublish

Résumé

The peptidoglycan (PG) cell wall is an essential polymer for the shape and viability of bacteria. Its protective role is in great part provided by its mesh-like character. Therefore, PG-cross-linking enzymes like the penicillin-binding proteins (PBPs) are among the best targets for antibiotics. However, while PBPs have been in the spotlight for more than 50 years, another class of PG-cross-linking enzymes called LD-transpeptidases (LDTs) seemed to contribute less to PG synthesis and, thus, has kept an aura of mystery. In the last years, a number of studies have associated LDTs with cell wall adaptation to stress including β-lactam antibiotics, outer membrane stability, and toxin delivery, which has shed light onto the biological meaning of these proteins. Furthermore, as some species display a great abundance of LD-cross-links in their cell wall, it has been hypothesized that LDTs could also be the main synthetic PG-transpeptidases in some bacteria. In this review, we introduce these enzymes and their role in PG biosynthesis and we highlight the most recent advances in understanding their biological role in diverse species.

Identifiants

pubmed: 34109739
doi: 10.1111/febs.16066
doi:

Substances chimiques

Anti-Bacterial Agents 0
Bacterial Proteins 0
Penicillin-Binding Proteins 0
Peptidoglycan 0
Peptidyl Transferases EC 2.3.2.12

Types de publication

Journal Article Review Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

4718-4730

Informations de copyright

© 2021 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

Références

Silhavy TJ, Kahne D & Walker S (2010) The bacterial cell envelope. Cold Spring Harb Perspect Biol 2, a000414.
Vollmer W, Blanot D & De Pedro MA (2008) Peptidoglycan structure and architecture. FEMS Microbiol Rev 32, 149-167.
Glauner B & Höltje JV (1990) Growth pattern of the murein sacculus of Escherichia coli. J Biol Chem 265, 18988-18996.
Barna JC & Williams DH (1984) The structure and mode of action of glycopeptide antibiotics of the vancomycin group. Annu Rev Microbiol 38, 339-357.
Goffin C & Ghuysen J-M (2002) Biochemistry and comparative genomics of SxxK superfamily acyltransferases offer a clue to the mycobacterial paradox: presence of penicillin-susceptible target proteins versus lack of efficiency of penicillin as therapeutic agent. Microbiol Mol Biol Rev 66, 702-738.
Pisabarro AG, de Pedro MA & Vázquez D (1985) Structural modifications in the peptidoglycan of Escherichia coli associated with changes in the state of growth of the culture. J Bacteriol 161, 238-242.
Glauner B, Höltje JV & Schwarz U (1988) The composition of the murein of Escherichia coli. J Biol Chem 263, 10088-10095.
Straume D, Piechowiak KW, Kjos M & Håvarstein LS (2021) Class A PBPs: It is time to rethink traditional paradigms. Mol Microbiol.
Paradis-Bleau C, Markovski M, Uehara T, Lupoli TJ, Walker S, Kahne DE & Bernhardt TG (2010) Lipoprotein cofactors located in the outer membrane activate bacterial cell wall polymerases. Cell 143, 1110-1120.
Typas A, Banzhaf M, van den Berg van Saparoea B, Verheul J, Biboy J, Nichols RJ, Zietek M, Beilharz K, Kannenberg K, von Rechenberg M et al. (2010) Regulation of peptidoglycan synthesis by outer-membrane proteins. Cell 143, 1097-1109.
Sung M-T, Lai Y-T, Huang C-Y, Chou L-Y, Shih H-W, Cheng W-C, Wong C-H & Ma C (2009) Crystal structure of the membrane-bound bifunctional transglycosylase PBP1b from Escherichia coli. Proc Natl Acad Sci USA 106, 8824-8829.
Egan AJF, Jean NL, Koumoutsi A, Bougault CM, Biboy J, Sassine J, Solovyova AS, Breukink E, Typas A, Vollmer W et al. (2014) Outer-membrane lipoprotein LpoB spans the periplasm to stimulate the peptidoglycan synthase PBP1B. Proc Natl Acad Sci USA 111, 8197-8202.
Lupoli TJ, Lebar MD, Markovski M, Bernhardt T, Kahne D & Walker S (2014) Lipoprotein activators stimulate Escherichia coli penicillin-binding proteins by different mechanisms. J Am Chem Soc 136, 52-55.
Mainardi J-L, Fourgeaud M, Hugonnet J-E, Dubost L, Brouard J-P, Ouazzani J, Rice LB, Gutmann L & Arthur M (2005) A novel peptidoglycan cross-linking enzyme for a beta-lactam-resistant transpeptidation pathway. J Biol Chem 280, 38146-38152.
Gupta R, Lavollay M, Mainardi JL, Arthur M, Bishai WR & Lamichhane G (2010) The Mycobacterium tuberculosis protein LdtMt2 is a nonclassical transpeptidase required for virulence and resistance to amoxicillin. Nat Med 16, 466-469.
Bielnicki J, Devedjiev Y, Derewenda U, Dauter Z, Joachimiak A & Derewenda ZS (2006) B. subtilis ykuD protein at 2.0 A resolution: insights into the structure and function of a novel, ubiquitous family of bacterial enzymes. Proteins 62, 144-151.
Triboulet S, Dubée V, Lecoq L, Bougault C, Mainardi J-L, Rice LB, Ethève-Quelquejeu M, Gutmann L, Marie A, Dubost L et al. (2013) Kinetic features of L, D-transpeptidase inactivation critical for β-lactam antibacterial activity. PLoS ONE 8, e67831.
Dubée V, Triboulet S, Mainardi J-L, Ethève-Quelquejeu M, Gutmann L, Marie A, Dubost L, Hugonnet J-E & Arthur M (2012) Inactivation of Mycobacterium tuberculosis l, d-transpeptidase LdtMt1 by carbapenems and cephalosporins. Antimicrob Agents Chemother 56, 4189-4195.
Cordillot M, Dubée V, Triboulet S, Dubost L, Marie A, Hugonnet J-E, Arthur M & Mainardi J-L (2013) In vitro cross-linking of Mycobacterium tuberculosis peptidoglycan by L, D-transpeptidases and inactivation of these enzymes by carbapenems. Antimicrob Agents Chemother 57, 5940-5945.
Triboulet S, Arthur M, Mainardi J-L, Veckerlé C, Dubée V, Nguekam-Moumi A, Gutmann L, Rice LB & Hugonnet J-E (2011) Inactivation kinetics of a new target of beta-lactam antibiotics. J Biol Chem 286, 22777-22784.
Lavollay M, Fourgeaud M, Herrmann J-L, Dubost L, Marie A, Gutmann L, Arthur M & Mainardi J-L (2011) The peptidoglycan of Mycobacterium abscessus is predominantly cross-linked by L, D-transpeptidases. J Bacteriol 193, 778-782.
Magnet S, Dubost L, Marie A, Arthur M & Gutmann L (2008) Identification of the L, D-transpeptidases for peptidoglycan cross-linking in Escherichia coli. J Bacteriol 190, 4782-4785.
Peltier J, Courtin P, El Meouche I, Lemée L, Chapot-Chartier MP & Pons JL (2011) Clostridium difficile has an original peptidoglycan structure with a high level of N-acetylglucosamine deacetylation and mainly 3-3 cross-links. J Biol Chem 286, 29053-29062.
Cameron TA, Anderson-Furgeson J, Zupan JR, Zik JJ & Zambryski PC (2014) Peptidoglycan synthesis machinery in Agrobacterium tumefaciens during unipolar growth and cell division. MBio 5, 1-10.
Magnet S, Bellais S, Dubost L, Fourgeaud M, Mainardi JL, Petit-Frère S, Marie A, Mengin-Lecreulx D, Arthur M & Gutmann L (2007) Identification of the L, D-transpeptidases responsible for attachment of the Braun lipoprotein to Escherichia coli peptidoglycan. J Bacteriol 189, 3927-3931.
Winkle M, Hernández-Rocamora VM, Pullela K, Goodall ECA, Martorana AM, Gray J, Henderson IR, Polissi A & Vollmer W (2021) DpaA detaches Braun’s lipoprotein from peptidoglycan. MBio 12, e00836-21.
Bahadur R, Chodisetti PK & Reddy M (2021) Cleavage of Braun’s lipoprotein Lpp from the bacterial peptidoglycan by a paralog of l, d-transpeptidases, LdtF. Proc Natl Acad Sci USA 118, e2101989118.
Sheikh J, Hicks S, Dall'Agnol M, Phillips AD & Nataro JP (2001) Roles for Fis and YafK in biofilm formation by enteroaggregative Escherichia coli. Mol Microbiol 41, 983-997.
Zandi TA, Marshburn RL, Stateler PK & Brammer Basta LA (2019) Phylogenetic and biochemical analyses of mycobacterial l, d -transpeptidases reveal a distinct enzyme class that is preferentially acylated by meropenem. ACS Infect Dis 5, 2047-2054.
Morè N, Martorana AM, Biboy J, Otten C, Winkle M, Serrano CKG, Montón Silva A, Atkinson L, Yau H, Breukink E et al. (2019) Peptidoglycan remodeling enables Escherichia coli to survive severe outer membrane assembly defect. MBio 10, e02729-18.
Cava F, de Pedro MA, Lam H, Davis BM & Waldor MK (2011) Distinct pathways for modification of the bacterial cell wall by non-canonical D-amino acids. EMBO J 30, 3442-3453.
Hugonnet JE, Mengin-Lecreulx D, Monton A, den Blaauwen T, Carbonnelle E, Veckerlé C, Yves VB, van Nieuwenhze M, Bouchier C, Tu K et al. (2016) Factors essential for L, D-transpeptidase-mediated peptidoglycan cross-linking and β-lactam resistance in Escherichia coli. Elife 5, 1-22.
Peters K, Pazos M, Edoo Z, Hugonnet JE, Martorana AM, Polissi A, VanNieuwenhze MS, Arthur M & Vollmer W (2018) Copper inhibits peptidoglycan LD-transpeptidases suppressing β-lactam resistance due to bypass of penicillin-binding proteins. Proc Natl Acad Sci USA 115, 10786-10791.
Brown PJB, De PMA, Kysela DT, Van Der Henst C, Kim J, De Bolle X, Fuqua C & Brun YV (2011) Polar growth in the Alphaproteobacterial order Rhizobiales. PNAS 109, 1697-1701.
Lavollay M, Arthur M, Fourgeaud M, Dubost L, Marie A, Veziris N, Blanot D, Gutmann L & Mainardi JL (2008) The peptidoglycan of stationary-phase Mycobacterium tuberculosis predominantly contains cross-links generated by L, D-transpeptidation. J Bacteriol 190, 4360-4366.
Wietzerbin J, Das BC, Petit JF, Lederer E, Leyh-Bouille M & Ghuysen JM (1974) Occurrence of D-alanyl-(D)-meso-diaminopimelic acid and meso-diaminopimelyl-meso-diaminopimelic acid interpeptide linkages in the peptidoglycan of Mycobacteria. Biochemistry 13, 3471-3476.
Kumar P, Arora K, Lloyd JR, Lee IY, Nair V, Fischer E, Boshoff HIM & Barry CE (2012) Meropenem inhibits D, D-carboxypeptidase activity in Mycobacterium tuberculosis. Mol Microbiol 86, 367-381.
Baranowski C, Welsh MA, Sham LT, Eskandarian HA, Lim HC, Kieser KJ, Wagner JC, McKinney JD, Fantner GE, Ioerger TR et al. (2018) Maturing Mycobacterium smegmatis peptidoglycan requires non-canonical crosslinks to maintain shape. Elife 7, 1-24.
Gokulan K, Khare S, Cerniglia CE, Foley SL & Varughese KI (2018) Structure and inhibitor specificity of L, D-transpeptidase (LdtMt2) from Mycobacterium tuberculosis and antibiotic resistance: calcium binding promotes dimer formation. AAPS J 20, 1-14.
Caveney NA, Serapio-Palacios A, Woodward SE, Bozorgmehr T, Caballero G, Vuckovic M, Deng W, Finlay BB & Strynadka NCJ (2020) Structural and cellular insights into the L,D-transpeptidase YcbB as a therapeutic target in C. rodentium, S. Typhimurium, and S. Typhi infections. Antimicrob Agents Chemother 65, e01592-20.
Caveney NA, Caballero G, Voedts H, Niciforovic A, Worrall LJ, Vuckovic M, Fonvielle M, Hugonnet JE, Arthur M & Strynadka NCJ (2019) Structural insight into YcbB-mediated beta-lactam resistance in Escherichia coli. Nat Commun 10, 1-11.
Böth D, Steiner EM, Stadler D, Lindqvist Y, Schnell R & Schneider G (2013) Structure of LdtMt2, an L, D-transpeptidase from Mycobacterium tuberculosis. Acta Crystallogr D Biol Crystallogr 69, 432-441.
Biarrotte-Sorin S, Hugonnet J-E, Delfosse V, Mainardi J-L, Gutmann L, Arthur M & Mayer C (2006) Crystal structure of a novel beta-lactam-insensitive peptidoglycan transpeptidase. J Mol Biol 359, 533-538.
Lecoq L, Dubée V, Triboulet S, Bougault C, Hugonnet J-E, Arthur M & Simorre J-P (2013) Structure of Enterococcus faecium l, d-transpeptidase acylated by ertapenem provides insight into the inactivation mechanism. ACS Chem Biol 8, 1140-1146.
Wang X, Gu X, Zhang C, Zhao F & Deng K (2020) Structural and biochemical analyses of the LdtMt2-panipenem adduct provide new insights into the effect of the 1-β-methyl group on carbapenems. Biochem Biophys Res Commun 523, 6-9.
Ibeji CU, Lawal MM, Tolufashe GF, Govender T, Naicker T, Maguire GEM, Lamichhane G, Kruger HG & Honarparvar B (2019) The driving force for the acylation of β-lactam antibiotics by L, D-transpeptidase 2: quantum mechanics/molecular mechanics (QM/MM) study. ChemPhysChem 20, 1126-1134.
Tolufashe GF, Sabe VT, Ibeji CU, Lawal MM, Govender T, Maguire GEM, Lamichhane G, Kruger HG & Honarparvar B (2019) Inhibition mechanism of L, D-transpeptidase 5 in presence of the β-lactams using ONIOM method. J Mol Graph Model 87, 204-210.
Bhattacharjee N, Triboulet S, Dubée V, Fonvielle M, Edoo Z, Hugonnet J-E, Ethève-Quelquejeu M, Simorre J-P, Field MJ, Arthur M et al. (2019) Negative impact of carbapenem methylation on the reactivity of β-lactams for cysteine acylation as revealed by quantum calculations and kinetic analyses. Antimicrob Agents Chemother 63, e02039-e2118.
Mainardi JL, Legrand R, Arthur M, Schoot B, van Heijenoort J & Gutmann L (2000) Novel mechanism of beta-lactam resistance due to bypass of DD-transpeptidation in Enterococcus faecium. J Biol Chem 275, 16490-16496.
Sacco E, Hugonnet JE, Josseaume N, Cremniter J, Dubost L, Marie A, Patin D, Blanot D, Rice LB, Mainardi JL et al. (2010) Activation of the L, D-transpeptidation peptidoglycan cross-linking pathway by a metallo-D, D-carboxypeptidase in Enterococcus faecium. Mol Microbiol 75, 874-885.
Itou H & Tanaka I (2001) The OmpR-family of proteins: insight into the tertiary structure and functions of two-component regulator proteins. J Biochem 129, 343-350.
Sacco E, Cortes M, Josseaume N, Rice LB, Mainardi J-L & Arthur M (2014) Serine/threonine protein phosphatase-mediated control of the Enterococcus faecium. MBio 5, e01446-e1514.
Kumar P, Kaushik A, Lloyd EP, Li S-G, Mattoo R, Ammerman NC, Bell DT, Perryman AL, Zandi TA, Ekins S et al. (2017) Non-classical transpeptidases yield insight into new antibacterials. Nat Chem Biol 13, 54-61.
Mainardi JL, Hugonnet JE, Rusconi F, Fourgeaud M, Dubost L, Moumi AN, Delfosse V, Mayer C, Gutmann L, Rice LB et al. (2007) Unexpected inhibition of peptidoglycan LD-transpeptidase from Enterococcus faecium by the β-lactam imipenem. J Biol Chem 282, 30414-30422.
Libreros-Zúniga GA, Dos Santos SC, Salgado Ferreira R & Dias MVB (2019) Structural basis for the interaction and processing of β-lactam antibiotics by l, d-transpeptidase 3 (LdtMt3) from Mycobacterium tuberculosis. ACS Infect Dis 5, 260-271.
Correale S, Ruggiero A, Capparelli R, Pedone E & Berisio R (2013) Structures of free and inhibited forms of the L, D-transpeptidase LdtMt1 from Mycobacterium tuberculosis. Acta Crystallogr D Biol Crystallogr 69, 1697-1706.
Basta LAB, Ghosh A, Pan Y, Jakoncic J, Lloyd EP, Townsend CA, Lamichhane G & Bianchet MA (2015) Loss of a functionally and structurally distinct LD-transpeptidase, LdtMt5, compromises cell wall integrity in Mycobacterium tuberculosis. J Biol Chem 290, 25670-25685.
Erdemli SB, Gupta R, Bishai WR, Lamichhane G, Amzel LM & Bianchet MA (2012) Targeting the cell wall of Mycobacterium tuberculosis: structure and mechanism of L, D-transpeptidase 2. Structure 20, 2103-2115.
Kumar P, Chauhan V, Silva JRA, Lameira J, D’Andrea FB, Li S-G, Ginell SL, Freundlich JS, Alves CN, Bailey S et al. (2017) Mycobacterium abscessus l, d-transpeptidases are susceptible to inactivation by carbapenems and cephalosporins but not penicillins. Antimicrob Agents Chemother 61, e00866-17.
Bianchet MA, Pan YH, Basta LAB, Saavedra H, Lloyd EP, Kumar P, Mattoo R, Townsend CA & Lamichhane G (2017) Structural insight into the inactivation of Mycobacterium tuberculosis non-classical transpeptidase Ldt(Mt2) by biapenem and tebipenem. BMC Biochem 18, 8.
Morlot C, Pernot L, Le Gouellec A, Di Guilmi AM, Vernet T, Dideberg O & Dessen A (2005) Crystal structure of a peptidoglycan synthesis regulatory factor (PBP3) from Streptococcus pneumoniae. J Biol Chem 280, 15984-15991.
Bernal-Cabas M, Ayala JA & Raivio TL (2015) The Cpx envelope stress response modifies peptidoglycan cross-linking via the L, D-transpeptidase LdtD and the novel protein YgaU. J Bacteriol 197, 603-614.
Delhaye A, Collet J-F & Laloux G (2016) Fine-tuning of the Cpx envelope stress response is required for cell wall homeostasis in Escherichia coli. MBio 7, e00047-e116.
Rowley G, Spector M, Kormanec J & Roberts M (2006) Pushing the envelope: extracytoplasmic stress responses in bacterial pathogens. Nat Rev Microbiol 4, 383-394.
Bury-Moné S, Nomane Y, Reymond N, Barbet R, Jacquet E, Imbeaud S, Jacq A & Bouloc P (2009) Global analysis of extracytoplasmic stress signaling in Escherichia coli. PLoS Genet 5, e1000651.
Duguay AR & Silhavy TJ (2004) Quality control in the bacterial periplasm. Biochim Biophys Acta 1694, 121-134.
Price NL & Raivio TL (2009) Characterization of the Cpx regulon in Escherichia coli strain MC4100. J Bacteriol 191, 1798-1815.
Raivio TL, Leblanc SKD & Price NL (2013) The Escherichia coli Cpx envelope stress response regulates genes of diverse function that impact antibiotic resistance and membrane integrity. J Bacteriol 195, 2755-2767.
Battesti A, Majdalani N & Gottesman S (2011) The RpoS-mediated general stress response in Escherichia coli. Annu Rev Microbiol 65, 189-213.
Auclair JL (1963) Aphid feeding and nutrition. Annu Rev Entomol 8, 439-490.
Moorby J (1981) Transport systems in plants. Longman, London, New York.
Pagliai FA, Gardner CL, Bojilova L, Sarnegrim A, Tamayo C, Potts AH, Teplitski M, Folimonova SY, Gonzalez CF & Lorca GL (2014) The Transcriptional Activator LdtR from ‘Candidatus Liberibacter asiaticus’ Mediates Osmotic Stress Tolerance. PLoS Pathogens 10, e1004101.
Coyle JF, Pagliai FA, Zhang D, Lorca GL & Gonzalez CF (2018) Purification and partial characterization of LdtP, a cell envelope modifying enzyme in Liberibacter asiaticus. BMC Microbiol 18, 1-15.
Woldemeskel SA & Goley ED (2017) Shapeshifting to survive: shape determination and regulation in Caulobacter crescentus. Trends Microbiol 25, 673-687.
Stankeviciute G, Miguel AV, Radkov A, Chou S, Huang KC & Klein EA (2019) Differential modes of crosslinking establish spatially distinct regions of peptidoglycan in Caulobacter crescentus. Mol Microbiol 111, 995-1008.
Billini M, Biboy J, Kühn J, Vollmer W & Thanbichler M (2019) A specialized MreB-dependent cell wall biosynthetic complex mediates the formation of stalk-specific peptidoglycan in Caulobacter crescentus. PLoS Genet 15, 1-33.
Toyoda K & Inui M (2018) Extracytoplasmic function sigma factor σD confers resistance to environmental stress by enhancing mycolate synthesis and modifying peptidoglycan structures in Corynebacterium glutamicum. Mol Microbiol 107, 312-329.
Sanders AN, Wright LF & Pavelka MS (2014) Genetic characterization of mycobacterial L, D-transpeptidases. Microbiol (United Kingdom) 160, 1795-1806.
de Pedro MA & Cava F (2015) Structural constraints and dynamics of bacterial cell wall architecture. Front Microbiol 6, 449.
Sockett RE (2009) Predatory lifestyle of Bdellovibrio bacteriovorus. Annu Rev Microbiol 63, 523-539.
Stolp H & Starr MP (1963) Bdellovibrio bacteriovorus gen. et sp. n., a predatory, ectoparasitic, and bacteriolytic microorganism. Antonie Van Leeuwenhoek 29, 217-248.
Kuru E, Lambert C, Rittichier J, Till R, Ducret A, Derouaux A, Gray J, Biboy J, Vollmer W, Vannieuwenhze M et al. (2017) Fluorescent D-amino-acids reveal bi-cellular cell wall modifications important for Bdellovibrio bacteriovorus predation. Nat Microbiol 2, 1648-1657.
Galán JE (2016) Typhoid toxin provides a window into typhoid fever and the biology of Salmonella Typhi. Proc Natl Acad Sci USA 113, 6338-6344.
Geiger T, Pazos M, Lara-Tejero M, Vollmer W & Galán JE (2018) Peptidoglycan editing by a specific LD-transpeptidase controls the muramidase-dependent secretion of typhoid toxin. Nat Microbiol 3, 1243-1254.
Geiger T, Lara-Tejero M, Xiong Y & Galán JE (2020) Mechanisms of substrate recognition by a typhoid toxin secretion-associated muramidase. Elife 9, 1-22.
Asmar AT & Collet J-F (2018) Lpp, the Braun lipoprotein, turns 50-major achievements and remaining issues. FEMS Microbiology Letters 365, fny199.
Suzuki H, Nishimura Y, Yasuda S, Nishimura A, Yamada M & Hirota Y (1978) Murein-lipoprotein of Escherichia coli: a protein involved in the stabilization of bacterial cell envelope. Mol Gen Genet 167, 1-9.
Cohen EJ, Ferreira JL, Ladinsky MS, Beeby M & Hughes KT (2017) Nanoscale-length control of the flagellar driveshaft requires hitting the tethered outer membrane. Science 356, 197-200.
Asmar AT, Ferreira JL, Cohen EJ, Cho S-H, Beeby M, Hughes KT & Collet J-F (2017) Communication across the bacterial cell envelope depends on the size of the periplasm. PLoS Biol 15, e2004303.
Sandoz KM, Moore RA, Beare PA, Patel AV, Smith RE, Bern M, Hwang H, Cooper CJ, Priola SA, Parks JM et al. (2021) β-Barrel proteins tether the outer membrane in many Gram-negative bacteria. Nat Microbiol 6, 19-26.
Godessart P, Lannoy A, Dieu M, Van der Verren SE, Soumillion P, Collet JF, Remaut H, Renard P & De Bolle X (2021) β-Barrels covalently link peptidoglycan and the outer membrane in the α-proteobacterium Brucella abortus. Nat Microbiol 6, 27-33.
Egan AJF (2018) Bacterial outer membrane constriction. Mol Microbiol 107, 676-687.
Lam H, Oh D-C, Cava F, Takacs CN, Clardy J, de Pedro MA & Waldor MK (2009) D-amino acids govern stationary phase cell wall remodeling in bacteria. Science 325, 1552-1555.
Hernandez SB, Dorr T, Waldor MK & Cava F (2020) Modulation of peptidoglycan synthesis by recycled cell wall tetrapeptides. Cell Rep 31, 107578.
Alvarez L, Aliashkevich A, de Pedro MA & Cava F (2018) Bacterial secretion of D-arginine controls environmental microbial biodiversity. ISME J 12, 438-450.
Kuru E, Hughes HV, Brown PJ, Hall E, Tekkam S, Cava F, de Pedro MA, Brun YV & Van Nieuwenhze MS (2012) In situ probing of newly synthesized peptidoglycan in live bacteria with fluorescent D-amino acids. Angew Chem Int Ed Engl 51, 12519-12523.
Hsu YP, Meng X & VanNieuwenhze MS (2016) Methods for visualization of peptidoglycan biosynthesis. Methods Microbiol 43, 3-48.
Hsu Y-P, Hall E, Booher G, Murphy B, Radkov AD, Yablonowski J, Mulcahey C, Alvarez L, Cava F, Brun YV et al. (2019) Fluorogenic D-amino acids enable real-time monitoring of peptidoglycan biosynthesis and high-throughput transpeptidation assays. Nat Chem 11, 335-341.
Hsu Y-P, Rittichier J, Kuru E, Yablonowski J, Pasciak E, Tekkam S, Hall E, Murphy B, Lee TK, Garner EC et al. (2017) Full color palette of fluorescent d-amino acids for in situ labeling of bacterial cell walls. Chem Sci 8, 6313-6321.
Kuru E, Radkov A, Meng X, Egan A, Alvarez L, Dowson A, Booher G, Breukink E, Roper DI, Cava F et al. (2019) Mechanisms of incorporation for D-amino acid probes that target peptidoglycan biosynthesis. ACS Chem Biol 14, 2745-2756.
Aldridge BB, Fernandez-Suarez M, Heller D, Ambravaneswaran V, Irimia D, Toner M & Fortune SM (2012) Asymmetry and aging of mycobacterial cells lead to variable growth and antibiotic susceptibility. Science 335, 100-104.
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC & Ferrin TE (2004) UCSF Chimera-a visualization system for exploratory research and analysis. J Comput Chem 25, 1605-1612.

Auteurs

Alena Aliashkevich (A)

Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Umeå University, Sweden.

Felipe Cava (F)

Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Umeå University, Sweden.

Articles similaires

Vancomycin-associated DRESS demonstrates delay in AST abnormalities.

Ahmed Hussein, Kateri L Schoettinger, Jourdan Hydol-Smith et al.
1.00
Humans Drug Hypersensitivity Syndrome Vancomycin Female Male
Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
Humans Arthroplasty, Replacement, Elbow Prosthesis-Related Infections Debridement Anti-Bacterial Agents
Vancomycin Polyesters Anti-Bacterial Agents Models, Theoretical Drug Liberation

Classifications MeSH