Optimal allocation in stratified cluster-based outcome-dependent sampling designs.
Health Management Information Systems
cluster-based sampling
generalized estimating equations
optimal allocation
outcome-dependent sampling
Journal
Statistics in medicine
ISSN: 1097-0258
Titre abrégé: Stat Med
Pays: England
ID NLM: 8215016
Informations de publication
Date de publication:
15 08 2021
15 08 2021
Historique:
revised:
31
03
2021
received:
15
11
2020
accepted:
12
04
2021
pubmed:
3
6
2021
medline:
10
8
2021
entrez:
2
6
2021
Statut:
ppublish
Résumé
In public health research, finite resources often require that decisions be made at the study design stage regarding which individuals to sample for detailed data collection. At the same time, when study units are naturally clustered, as patients are in clinics, it may be preferable to sample clusters rather than the study units, especially when the costs associated with travel between clusters are high. In this setting, aggregated data on the outcome and select covariates are sometimes routinely available through, for example, a country's Health Management Information System. If used wisely, this information can be used to guide decisions regarding which clusters to sample, and potentially obtain gains in efficiency over simple random sampling. In this article, we derive a series of formulas for optimal allocation of resources when a single-stage stratified cluster-based outcome-dependent sampling design is to be used and a marginal mean model is specified to answer the question of interest. Specifically, we consider two settings: (i) when a particular parameter in the mean model is of primary interest; and, (ii) when multiple parameters are of interest. We investigate the finite population performance of the optimal allocation framework through a comprehensive simulation study. Our results show that there are trade-offs that must be considered at the design stage: optimizing for one parameter yields efficiency gains over balanced and simple random sampling, while resulting in losses for the other parameters in the model. Optimizing for all parameters simultaneously yields smaller gains in efficiency, but mitigates the losses for the other parameters in the model.
Identifiants
pubmed: 34076912
doi: 10.1002/sim.9016
pmc: PMC8812629
mid: NIHMS1707648
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
4090-4107Subventions
Organisme : NHLBI NIH HHS
ID : R01 HL094786
Pays : United States
Organisme : NIEHS NIH HHS
ID : T32 ES007142
Pays : United States
Organisme : NIH HHS
ID : R01 HL094786
Pays : United States
Organisme : NIEHS NIH HHS
ID : T32ES007142
Pays : United States
Informations de copyright
© 2021 John Wiley & Sons Ltd.
Références
Biometrics. 1999 Sep;55(3):688-98
pubmed: 11314994
J Am Stat Assoc. 2020;115(532):1946-1959
pubmed: 33716361
Epidemiology. 2018 Jan;29(1):67-75
pubmed: 29068838
Biostatistics. 2012 Apr;13(2):274-88
pubmed: 22130627
Stat Med. 2015 Sep 20;34(21):2899-912
pubmed: 25951124
Stat Med. 2021 Apr 15;40(8):1863-1876
pubmed: 33442883
Stat Med. 2020 Dec 30;39(30):4912-4921
pubmed: 33016376
Biometrics. 2021 Jan 14;:
pubmed: 33444459
Biometrics. 2001 Mar;57(1):126-34
pubmed: 11252587
Am J Epidemiol. 2020 Feb 28;189(2):81-90
pubmed: 31165875
Biostatistics. 2008 Oct;9(4):735-49
pubmed: 18372397
Stat Med. 2021 Jan 30;40(2):254-270
pubmed: 33068038
BMC Health Serv Res. 2020 Jan 20;20(1):50
pubmed: 31959165
Surv Methodol. 2008 Jun;34(1):65-78
pubmed: 19680463
Stat Methods Med Res. 2013 Jun;22(3):278-95
pubmed: 21220355
Am J Epidemiol. 1996 Jan 1;143(1):92-100
pubmed: 8533752
Biometrics. 2013 Jun;69(2):405-16
pubmed: 23409789
Biometrics. 2011 Dec;67(4):1583-93
pubmed: 21457191
Stat Methods Med Res. 2020 Dec 16;:962280220978500
pubmed: 33327876
BMC Med Inform Decis Mak. 2010 Jun 25;10:36
pubmed: 20579336
Ann Appl Stat. 2015 Jun;9(2):731-753
pubmed: 26322147
Bull World Health Organ. 2005 Aug;83(8):578-83
pubmed: 16184276
Health Policy Plan. 2016 Sep;31 Suppl 2:ii12-ii24
pubmed: 27591202
Stat Biosci. 2009 May 1;1(1):32
pubmed: 20174455