High-Throughput Image Analysis of Lipid-Droplet-Bound Mitochondria.


Journal

Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969

Informations de publication

Date de publication:
2021
Historique:
entrez: 1 6 2021
pubmed: 2 6 2021
medline: 9 7 2021
Statut: ppublish

Résumé

Changes to mitochondrial architecture are associated with various adaptive and pathogenic processes. However, quantification of changes to mitochondrial structures is limited by the yet unmet challenge of defining the borders of each individual mitochondrion within an image. Here, we describe a novel method for segmenting primary brown adipocyte (BA) mitochondria images. We describe a granular approach to quantifying subcellular structures, particularly mitochondria in close proximity to lipid droplets: peridroplet mitochondria. In addition, we lay out a novel machine-learning-based mitochondrial segmentation method that eliminates the bias of manual mitochondrial segmentation and improves object recognition compared to conventional thresholding analyses. By applying these methods, we discovered a significant difference between cytosolic and peridroplet BA mitochondrial H

Identifiants

pubmed: 34060050
doi: 10.1007/978-1-0716-1266-8_22
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

285-303

Références

Joshi MS, Crouser ED, Julian MW et al (2000) Digital imaging analysis for the study of endotoxin-induced mitochondrial ultrastructure injury. Anal Cell Pathol 21:41–48
doi: 10.1155/2000/201406
Mutterer J, Rasband W (2012) ImageJ macro language programmer’s reference guide v1.46d. RSB Homepage 1–45
Wikstrom JD, Mahdaviani K, Liesa M et al (2014) Hormone-induced mitochondrial fission is utilized by brown adipocytes as an amplification pathway for energy expenditure. EMBO J 33:418–436. https://doi.org/10.1002/embj.201385014
doi: 10.1002/embj.201385014 pubmed: 24431221 pmcid: 3983686
Zingaretti MC, Crosta F, Vitali A et al (2009) The presence of UCP1 demonstrates that metabolically active adipose tissue in the neck of adult humans truly represents brown adipose tissue. FASEB J 23:3113–3120. https://doi.org/10.1096/fj.09-133546
doi: 10.1096/fj.09-133546 pubmed: 19417078
Benador IY, Veliova M, Mahdaviani K et al (2018) Mitochondria bound to lipid droplets have unique composition, bioenergetics, and dynamics that support lipid droplet expansion. Cell Metab 27:869
doi: 10.1016/j.cmet.2018.03.003
Mahdaviani K, Benador IY, Su S et al (2017) Mfn2 deletion in brown adipose tissue protects from insulin resistance and impairs thermogenesis. EMBO Rep 18:1123. https://doi.org/10.15252/embr.201643827
doi: 10.15252/embr.201643827 pubmed: 28539390 pmcid: 5887905
Leonard AP, Cameron RB, Speiser JL et al (2015) Quantitative analysis of mitochondrial morphology and membrane potential in living cells using high-content imaging, machine learning, and morphological binning. Biochim Biophys Acta 1853:348–360. https://doi.org/10.1016/j.bbamcr.2014.11.002
doi: 10.1016/j.bbamcr.2014.11.002 pubmed: 25447550
Valente AJ, Maddalena LA, Robb EL et al (2017) A simple ImageJ macro tool for analyzing mitochondrial network morphology in mammalian cell culture. Acta Histochem 119:315–326. https://doi.org/10.1016/j.acthis.2017.03.001
doi: 10.1016/j.acthis.2017.03.001 pubmed: 28314612
Cribbs JT, Strack S (2009) Functional characterization of phosphorylation sites in dynamin-related protein 1. Methods Enzymol 457:231–253. https://doi.org/10.1016/S0076-6879(09)05013-7
doi: 10.1016/S0076-6879(09)05013-7 pubmed: 19426871 pmcid: 4271647
Chaudhry A, Shi R, Luciani DS (2019) A pipeline for multidimensional confocal analysis of mitochondrial morphology, function, and dynamics in pancreatic β-cells. Am J Physiol Metab 318:E87–E101. https://doi.org/10.1152/ajpendo.00457.2019
doi: 10.1152/ajpendo.00457.2019
Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. https://doi.org/10.1038/nmeth.2019
doi: 10.1038/nmeth.2019 pubmed: 22743772
Arganda-Carreras I, Kaynig V, Rueden C et al (2017) Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification. Bioinformatics 33:2424–2426. https://doi.org/10.1093/bioinformatics/btx180
doi: 10.1093/bioinformatics/btx180 pubmed: 28369169
Koopman WJH, Visch H-J, Smeitink JAM, Willems PHGM (2006) Simultaneous quantitative measurement and automated analysis of mitochondrial morphology, mass, potential, and motility in living human skin fibroblasts. Cytom Part A 69A:1–12. https://doi.org/10.1002/cyto.a.20198
doi: 10.1002/cyto.a.20198
Harwig MC, Viana MP, Egner JM et al (2018) Methods for imaging mammalian mitochondrial morphology: a prospective on MitoGraph. Anal Biochem 552:81. https://doi.org/10.1016/j.ab.2018.02.022
doi: 10.1016/j.ab.2018.02.022 pubmed: 29505779 pmcid: 6322684
Nguyen A, Beyersdorf J, Riethoven J-J, Pannier AK (2016) High-throughput screening of clinically approved drugs that prime polyethylenimine transfection reveals modulation of mitochondria dysfunction response improves gene transfer efficiencies. Bioeng Transl Med 1:123–135. https://doi.org/10.1002/btm2.10017
doi: 10.1002/btm2.10017 pubmed: 27981241 pmcid: 5127179
Molina AA, Wikstrom JD, Stiles L et al (2009) Mitochondrial networking protects beta-cells from nutrient-induced apoptosis. Diabetes 58:2303–2315. https://doi.org/10.2337/db07-1781
doi: 10.2337/db07-1781 pubmed: 19581419 pmcid: 2750232
Wikstrom JD, Katzman SM, Mohamed H et al (2007) Beta-cell mitochondria exhibit membrane potential heterogeneity that can be altered by stimulatory or toxic fuel levels. Diabetes 56:2569–2578. https://doi.org/10.2337/db06-0757
doi: 10.2337/db06-0757 pubmed: 17686943
Twig G, Graf SA, Wikstrom JD et al (2006) Tagging and tracking individual networks within a complex mitochondrial web with photoactivatable GFP. Am J Physiol Cell Physiol 291:C176–C184. https://doi.org/10.1152/ajpcell.00348.2005
doi: 10.1152/ajpcell.00348.2005 pubmed: 16481372
Morgan B, Sobotta MC, Dick TP (2011) Measuring E GSH and H 2O 2 with roGFP2-based redox probes. Free Radic Biol Med 51:1943–1951. https://doi.org/10.1016/j.freeradbiomed.2011.08.035
doi: 10.1016/j.freeradbiomed.2011.08.035 pubmed: 21964034
Criddle DN, Gillies S, Baumgartner-Wilson HK et al (2006) Menadione-induced reactive oxygen species generation via redox cycling promotes apoptosis of murine pancreatic acinar cells. J Biol Chem 281:40485–40492. https://doi.org/10.1074/jbc.M607704200
doi: 10.1074/jbc.M607704200 pubmed: 17088248
Breiman L (2001) Random forests. Mach Learn 45:5–32. https://doi.org/10.1023/A:1010933404324
doi: 10.1023/A:1010933404324
Cannon B, Nedergaard J (2001) Cultures of adipose precursor cells from brown adipose tissue and of clonal brown-adipocyte-like cell lines. Methods Mol Biol 155:213–224. https://doi.org/10.1385/1-59259-231-7:213
doi: 10.1385/1-59259-231-7:213 pubmed: 11293074
Assali EA, Jones AE, Veliova M et al (2018) NCLX prevents cell death during adrenergic activation of the brown adipose tissue. bioRxiv:464339. https://doi.org/10.1101/464339
Miller N, Wolf D, Alsabeeh N et al (2020) High-throughput image analysis of lipid-droplet-bound mitochondria. bioRxiv:985929. https://doi.org/10.1101/2020.03.10.985929
Smith DD, Kovats S, Lee TD, Cano L (2006) Median filter algorithm for estimating the threshold of detection on custom protein arrays. Biotechniques 41:74–78. https://doi.org/10.2144/000112204
doi: 10.2144/000112204 pubmed: 16869517

Auteurs

Nathanael Miller (N)

Division of Endocrinology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
Department of Medicine, Obesity Research Center, Boston University School of Medicine, Boston, MA, USA.

Dane Wolf (D)

Division of Endocrinology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
Department of Medicine, Obesity Research Center, Boston University School of Medicine, Boston, MA, USA.

Nour Alsabeeh (N)

Department of Physiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait.

Kiana Mahdaviani (K)

Department of Medicine, Obesity Research Center, Boston University School of Medicine, Boston, MA, USA.

Mayuko Segawa (M)

Division of Endocrinology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.

Marc Liesa (M)

Division of Endocrinology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA. mliesa@mednet.ucla.edu.

Orian S Shirihai (OS)

Division of Endocrinology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH