Aspects of high hydrostatic pressure food processing: Perspectives on technology and food safety.

HHP allergen chemical food safety high hydrostatic pressure microbiology packaging

Journal

Comprehensive reviews in food science and food safety
ISSN: 1541-4337
Titre abrégé: Compr Rev Food Sci Food Saf
Pays: United States
ID NLM: 101305205

Informations de publication

Date de publication:
07 2021
Historique:
revised: 02 04 2021
received: 31 07 2020
accepted: 10 04 2021
pubmed: 1 6 2021
medline: 26 10 2021
entrez: 31 5 2021
Statut: ppublish

Résumé

The last two decades saw a steady increase of high hydrostatic pressure (HHP) used for treatment of foods. Although the science of biomaterials exposed to high pressure started more than a century ago, there still seem to be a number of unanswered questions regarding safety of foods processed using HHP. This review gives an overview on historical development and fundamental aspects of HHP, as well as on potential risks associated with HHP food applications based on available literature. Beside the combination of pressure and temperature, as major factors impacting inactivation of vegetative bacterial cells, bacterial endospores, viruses, and parasites, factors, such as food matrix, water content, presence of dissolved substances, and pH value, also have significant influence on their inactivation by pressure. As a result, pressure treatment of foods should be considered for specific food groups and in accordance with their specific chemical and physical properties. The pressure necessary for inactivation of viruses is in many instances slightly lower than that for vegetative bacterial cells; however, data for food relevant human virus types are missing due to the lack of methods for determining their infectivity. Parasites can be inactivated by comparatively lower pressure than vegetative bacterial cells. The degrees to which chemical reactions progress under pressure treatments are different to those of conventional thermal processes, for example, HHP leads to lower amounts of acrylamide and furan. Additionally, the formation of new unknown or unexpected substances has not yet been observed. To date, no safety-relevant chemical changes have been described for foods treated by HHP. Based on existing sensitization to non-HHP-treated food, the allergenic potential of HHP-treated food is more likely to be equivalent to untreated food. Initial findings on changes in packaging materials under HHP have not yet been adequately supported by scientific data.

Identifiants

pubmed: 34056857
doi: 10.1111/1541-4337.12763
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

3225-3266

Informations de copyright

© 2021 The Authors. Comprehensive Reviews in Food Science and Food Safety published by Wiley Periodicals LLC on behalf of Institute of Food Technologists.

Références

Abdul Ghani, A. G., & Farid, M. M. (2007). Modeling of high pressure food processing using CFD. In D. W. Sun (Ed.), Computational fluid dynamics in food processing (pp. 537-553). Boca Raton, FL: CRC Press.
Abdul Ghani, A. G., & Farid, M. M. (2007). Numerical simulation of solid-liquid food mixture in a high pressure processing unit using computational fluid dynamics. Journal of Food Engineering, 80(4), 1031-1042.
Abraham, K., Gurtler, R., Berg, K., Heinemeyer, G., Lampen, A., & Appel, K. E. (2011). Toxicology and risk assessment of 5-hydroxymethylfurfural in food. Molecular Nutrition & Food Research, 55(5), 667-678.
Adams, C. M., Eckenroth, B. E., Putnam, E. E., Doublié, S., & Shen, A. (2013). Structural and functional analysis of the CspB protease required for Clostridium spore germination. PLoS Pathogens, 9(2), e1003165.
Aertsen, A., Meersman, F., Hendrickx, M. E., Vogel, R. F., & Michiels, C. W. (2009). Biotechnology under high pressure: Applications and implications. Trends in Biotechnology, 27(7), 434-441.
Aganovic, K. (2017). Impact comparison of thermal, pulsed electric fields and high pressure preservation of watermelon and tomato juice: From fingerprint to footprint (PhD thesis). Laboratory of Food Technology, KU Leuven.
Aganovic, K., Smetana, S., Grauwet, T., Toepfl, S., Mathys, A., Van Loey, A., & Heinz, V. (2017). Pilot scale thermal and alternative pasteurization of tomato and watermelon juice: An energy comparison and life cycle assessment. Journal of Cleaner Production, 141, 514-525.
Ahn, J., Lee, H.-Y., & Balasubramaniam, V. M. (2015). Inactivation of Geobacillus stearothermophilus spores in low-acid foods by pressure-assisted thermal processing. Journal of the Science of Food and Agriculture, 95(1), 174-178.
Akhtar, S., Paredes-Sabja, D., Torres, J. A., & Sarker, M. R. (2009). Strategy to inactivate Clostridium perfringens spores in meat products. Food Microbiology, 26(3), 272-277.
Allison Abimbola, Chowdhury Shahid, Fouladkhah Aliyar (2018). Synergism of Mild Heat and High-Pressure Pasteurization Against Listeria monocytogenes and Natural Microflora in Phosphate-Buffered Saline and Raw Milk. Microorganisms, 6(4), 102.
Alt, N., & Schieberle, P. (2005). Model studies on the influence of high hydrostatic pressure on the formation of glycated arginine modifications at elevated temperatures. Journal of Agriculture and Food Chemistry, 53(14), 5789-5797.
Ananta, E., Heinz, V., Schlüter, O., & Knorr, D. (2001). Kinetic studies on high-pressure inactivation of Bacillus stearothermophilus spores suspended in food matrices. Innovative Food Science & Emerging Technologies, 2(4), 261-272.
Ananta, E., & Knorr, D. (2009). Comparison of inactivation pathways of thermal or high pressure inactivated Lactobacillus rhamnosus ATCC 53103 by flow cytometry analysis. Food Microbiology, 26(5), 542-546.
Andersen, B., & Gronlund, F. (1979). High-pressure kinetics of glucose mutarotation Acta Chemica Scandinavica Series A, 33, 275-280.
Aras, S., Kabir, M. N., Chowdhury, S., & Fouladkhah, A. C. (2020). Augmenting the pressure-based pasteurization of Listeria monocytogenes by synergism with nisin and mild heat. International Journal of Environmental Research and Public Health, 17(2), 563.
Araud, E., DiCaprio, E., Yang, Z., Li, X., Lou, F., Hughes, J. H., Chen, H., & Li, J. (2015). High-pressure inactivation of rotaviruses: Role of treatment temperature and strain diversity in virus inactivation. Applied and Environmental Microbiology, 81(19), 6669-6678.
Ardia, A. (2004). Process considerations on the application of high pressure treatment at elevated temperature levels for food preservation (PhD thesis). Technical University of Berlin.
Arnold, C., Schwarzenbolz, U., & Boehm, V. (2014). Carotenoids and chlorophylls in processed xanthophyll-rich food. LWT - Food Science and Technology, 57(1), 442-445.
Arroyo, G., Sanz, P. D., & Prestamo, G. (1997). Effect of high pressure on the reduction of microbial populations in vegetables. Journal of Applied Microbiology, 82(6), 735-742.
Arroyo, G., Sanz, P. D., & Prestamo, G. (1999). Response to high-pressure, low-temperature treatment in vegetables: Determination of survival rates of microbial populations using flow cytometry and detection of peroxidase activity using confocal microscopy. Journal of Applied Microbiology, 86(3), 544-556.
Arthur, S. E., & Gibson, K. E. (2015). Comparison of methods for evaluating the thermal stability of human enteric viruses. Food Environmental Virology, 7(1), 14-26.
Atuonwu, J. C., Leadley, C., Bosman, A., & Tassou, S. A. (2020). High-pressure processing, microwave, ohmic, and conventional thermal pasteurization: Quality aspects and energy economics. Journal of Food Process Engineering, 43(2), e13328.
Atuonwu, J. C., Leadley, C., Bosman, A., Tassou, S. A., Lopez-Quiroga, E., & Fryer, P. J. (2018). Comparative assessment of innovative and conventional food preservation technologies: Process energy performance and greenhouse gas emissions. Innovative Food Science & Emerging Technologies, 50, 174-187.
Avsaroglu, M., Bozoglu, F., Alpas, H., Largeteau, A., & Demazeau, G. (2015). Use of pulsed-high hydrostatic pressure treatment to decrease patulin in apple juice. High Pressure Research, 35(2), 214-222.
Balamurugan, S., Ahmed, R., Chibeu, A., Gao, A., Koutchma, T., & Strange, P. (2016). Effect of salt types and concentrations on the high-pressure inactivation of Listeria monocytogenes in ground chicken. International Journal of Food Microbiology, 218, 51-56.
Balasubramaniam, V. M. (2016). High pressure processing of food. New York: Springer.
Balasubramaniam, V. M., Barbosa-Cánovas, G. V., & Lelieveld, H. L. M. (2016). High-pressure processing equipment for the food industry. In V. M. Balasubramaniam, G. V. Barbosa-Cánovas, & H. L. M. Lelieveld (Eds.), High pressure processing of food - Principles, technology and applications (pp. 39-66). New York: Springer Science+Business Media.
Balasubramaniam, V. M., Martiinez-Monteagudo, S. I., & Gupta, R. (2015). Principles and application of high pressure-based technologies in the food industry. In M. P. Doyle & T. R. Klaenhammer (Eds.), Annual review of food science and technology (Vol 6, pp. 435-462).
Barba, F. J., Esteve, M. J., & Frigola, A. (2012). Impact of high-pressure processing on vitamin E (α-, γ-, and δ-tocopherol), vitamin D (cholecalciferol and ergocalciferol), and fatty acid profiles in liquid foods. Journal of Agricultural and Food Chemistry, 60(14), 3763-3768.
Barba, F. J., Terefe, N. S., Buckow, R., Knorr, D., & Orlien, V. (2015). New opportunities and perspectives of high pressure treatment to improve health and safety attributes of foods. A review. Food Research International, 77, 725-742.
Barbosa-Canovas, G. V. (2008). Shelf stable egg-based products processed by ultra high pressure technology. Technical report. Retrieved from https://apps.dtic.mil/sti/citations/ADA528458.
Basset, J., Gratia, A., Macheboeuf, M., & Manil, P. (1938). Action of high pressures on plant viruses. Proceedings of the Society for Experimental Biology and Medicine, 38(2), 248-251.
Basset, J., & Macheboeuf, M. (1933). Etude sur les effets biologiques des ultra-pressions. Etudes sur l'immunité. Influence des pressions très élevées sur certains antigènes et anticorps. CR Académie Des Sciences, 196, 67-69.
Basset, J., Wollman, E., Macheboeuf, M., & Bardach, M. (1933). Etudes sur les effets biologiques des ultra-pressions: action des pressions très élevées sur les bactériophages et sur un virus invisible (virus vaccinal). CR Académie Des Sciences, 196, 1138-1139.
Benito, A., Ventoura, G., Casadei, M., Robinson, T., & Mackey, B. (1999). Variation in resistance of natural isolates of Escherichia coli O157 to high hydrostatic pressure, mild heat, and other stresses. Applied and Environmental Microbiology, 65(4), 1564-1569.
Black, E., Wei, J., Atluri, S., Cortezzo, D., Koziol-Dube, K., Hoover, D., & Setlow, P. (2007). Analysis of factors influencing the rate of germination of spores of Bacillus subtilis by very high pressure. Journal of Applied Microbiology, 102(1), 65-76.
Bolumar, T., Middendorf, D., Toepfl, S., & Heinz, V. (2016). Structural changes in foods caused by high-pressure processing. In V. M. Balasubramaniam G. Barbosa-Cánovas & H. Lelieveld High pressure processing of food (pp. 509-537). Springer.
Bolumar, T., Skibsted, L. H., & Orlien, V. (2012). Kinetics of the formation of radicals in meat during high pressure processing. Food Chemistry, 134(4), 2114-2120.
Bonilauri, P., Grisenti, M. S., Daminelli, P., Merialdi, G., Ramini, M., Bardasi, L., R. Taddei, E. Cosciani-Cunico, E. Dalzini, M. A. Frustoli, F. Giacometti, S. Piva, & Serraino, A. (2019). Reduction of Salmonella spp. populations in Italian salami during production process and high pressure processing treatment: Validation of processes to export to the U.S. Meat Science, 157(June), 107869-107869.
Bover-Cid, S., Belletti, N., Aymerich, T., & Garriga, M. (2017). Modelling the impact of water activity and fat content of dry-cured ham on the reduction of Salmonella enterica by high pressure processing. Meat Science, 123, 120-125.
Bridgman, P. W. (1912). Water, in the liquid and five solid forms, under pressure. Paper presented at the Proceedings of the American Academy of Arts and Sciences.
Bristow, M., & Isaacs, N. (1999). The effect of high pressure on the formation of volatile products in a model Maillard reaction. Journal of the Chemical Society, Perkin Transactions, 2, 2213-2218.
Brutti, A., Rovere, P., Cavallero, S., D'Amelio, S., Danesi, P., & Arcangeli, G. (2010). Inactivation of Anisakis simplex larvae in raw fish using high hydrostatic pressure treatments. Food Control, 21(3), 331-333.
Buckow, R., Bingham, J., Daglas, S., Lowther, S., Amos-Ritchie, R., & Middleton, D. (2017). High pressure inactivation of selected avian viral pathogens in chicken meat homogenate. Food Control, 73, 215-222.
Buckow, R., Isbarn, S., Knorr, D., Heinz, V., & Lehmacher, A. (2008). Predictive model for inactivation of feline calicivirus, a norovirus surrogate, by heat and high hydrostatic pressure. Applied and Environmental Microbiology, 74(4), 1030-1038.
Buckow, R., Sikes, A., & Tume, R. (2013). Effect of high pressure on physicochemical properties of meat. Critical Reviews in Food Science and Nutrition, 53(7), 770-786.
Buckow, R., Wendorff, J., & Hemar, Y. (2011). Conjugation of bovine serum albumin and glucose under combined high pressure and heat. Journal of Agricultural and Food Chemistry, 59(8), 3915-3923.
Bull, M., Olivier, S., Van Diepenbeek, R., Kormelink, F., & Chapman, B. (2009). Synergistic inactivation of spores of proteolytic Clostridium botulinum strains by high pressure and heat is strain and product dependent. Applied and Environmental Microbiology, 75(2), 434-445.
Burns, D. A., Heap, J. T., & Minton, N. P. (2010). SleC is essential for germination of Clostridium difficile spores in nutrient-rich medium supplemented with the bile salt taurocholate. Journal of Bacteriology, 192(3), 657-664.
Butz, P., Edenharder, R., Garcı́a, A. F., Fister, H., Merkel, C., & Tauscher, B. (2002). Changes in functional properties of vegetables induced by high pressure treatment. Food Research International, 35(2-3), 295-300.
Buzrul, S., Alpas, H., Largeteau, A., & Demazeau, G. (2008). Inactivation of Escherichia coli and Listeria innocua in kiwifruit and pineapple juices by high hydrostatic pressure. International Journal of Food Microbiology, 124(3), 275-278.
Cacace, F., Bottani, E., Rizzi, A., & Vignali, G. (2020). Evaluation of the economic and environmental sustainability of high pressure processing of foods. Innovative Food Science & Emerging Technologies, 60, 102281.
Cartman, S. T., & Minton, N. P. (2010). A mariner-based transposon system for in vivo random mutagenesis of Clostridium difficile. Applied and Environmental Microbiology, 76(4), 1103-1109.
Casquete, R., Castro, S. M., Martin, A., Ruiz-Moyano, S., Saraiva, J. A., Cordoba, M. G., & Teixeira, P. (2015). Evaluation of the effect of high pressure on total phenolic content, antioxidant and antimicrobial activity of citrus peels. Innovative Food Science & Emerging Technologies, 31, 37-44.
Cava, R., Ladero, L., González, S., Carrascosa, A., & Ramírez, M. R. (2009). Effect of pressure and holding time on colour, protein and lipid oxidation of sliced dry-cured Iberian ham and loin during refrigerated storage. Innovative Food Science and Emerging Technologies, 10(1), 76-81.
Chakraborty, S., Rao, P. S., & Mishra, H. N. (2015). Empirical model based on Weibull distribution describing the destruction kinetics of natural microbiota in pineapple (Ananas comosus L.) puree during high-pressure processing. International Journal of Food Microbiology, 211, 117-127.
Cheah, P., & Ledward, D. (1996). High pressure effects on lipid oxidation in minced pork. Meat Science, 43(2), 123-134.
Cheftel, J. C. (1995). High-pressure, microbial inactivation and food preservation. Food Science and Technology International, 1(2-3), 75-90.
Chen, H., Hoover, D. G., & Kingsley, D. H. (2005). Temperature and treatment time influence high hydrostatic pressure inactivation of feline calicivirus, a norovirus surrogate. Journal of Food Protection, 68(11), 2389-2394.
Chicón, R., Belloque, J., Alonso, E., & López-Fandiño, R. (2008). Immunoreactivity and digestibility of high-pressure-treated whey proteins. International Dairy Journal, 18(4), 367-376.
Chicón, R., Belloque, J., Alonso, E., & López-Fandiño, R. (2009). Antibody binding and functional properties of whey protein hydrolysates obtained under high pressure. Food Hydrocolloids, 23(3), 593-599.
Chicón, R., López-Fandiño, R., Alonso, E., & Belloque, J. (2008). Proteolytic pattern, antigenicity, and serum immunoglobulin E binding of β-lactoglobulin hydrolysates obtained by pepsin and high-pressure treatments. Journal of Dairy Science, 91(3), 928-938.
Chien, S.-Y., Sheen, S., Sommers, C., & Sheen, L.-Y. (2017). Modeling the inactivation of Escherichia coli O157: H7 and uropathogenic E. coli in ground beef by high pressure processing and citral. Food Control, 73, 672-680.
Collins, M. V., Flick, G. J., Smith, S. A., Fayer, R., Croonenberghs, R., O'Keefe, S., & Lindsay, D. S. (2005). The effect of high-pressure processing on infectivity of Cryptosporidium parvum oocysts recovered from experimentally exposed eastern oysters (Crassostrea virginica). Journal of Eukaryotic Microbiology, 52(6), 500-504.
Considine, K. M., Kelly, A. L., Fitzgerald, G. F., Hill, C., & Sleator, R. D. (2008). High-pressure processing-Effects on microbial food safety and food quality. FEMS Microbiology Letters, 281(1), 1-9.
Cook, D. W. (2003). Sensitivity of Vibrio species in phosphate-buffered saline and in oysters to high-pressure processing. Journal of Food Protection, 66(12), 2276-2282.
Cook, N., D'Agostino, M., & Johne, R. (2017). Potential approaches to assess the infectivity of hepatitis E virus in pork products: A review. Food and Environmental Virology, 9(3), 243-255.
Cruess, W. V. (1924). Commercial fruit and vegetable products. New York: McGraw-Hill.
D'Souza, T., Karwe, M., & Schaffner, D. W. (2012). Effect of high hydrostatic pressure and pressure cycling on a pathogenic Salmonella enterica serovar cocktail inoculated into creamy peanut butter. Journal of Food Protection, 75(1), 169-173.
da Rocha Ferreira, E. H., Rosenthal, A., Calado, V., Saraiva, J., & Mendo, S. (2009). Byssochlamys nivea inactivation in pineapple juice and nectar using high pressure cycles. Journal of Food Engineering, 95(4), 664-669.
Daryaei, H., & Balasubramaniam, V. (2013). Kinetics of Bacillus coagulans spore inactivation in tomato juice by combined pressure-heat treatment. Food Control, 30(1), 168-175.
Daryaei, H., Balasubramaniam, V., & Legan, J. D. (2013). Kinetics of Bacillus cereus spore inactivation in cooked rice by combined pressure-heat treatment. Journal of Food Protection, 76(4), 616-623.
Davis, J., Moates, G., & Waldron, K. (2010). The environmental impact of pulsed electric field treatment and high pressure processing: The example of carrot juice. In C.J. Doona K. Kustin & F.E. Feeherry Case studies in novel food processing technologies (pp. 103-115).,
De Girolamo, A., Lattanzio, V. M., Schena, R., Visconti, A., & Pascale, M. (2016). Effect of alkaline cooking of maize on the content of fumonisins B1 and B2 and their hydrolysed forms. Food Chemistry, 192, 1083-1089.
de Heij, W. B., van Schepdael, L. J. M. M., Moezelaar, R., Hoogland, H., Matser, A. M., & van den Berg, R. W. (2003). High-pressure sterilization: Maximizing the benefits of adiabatic heating. Food Technology, 57(3), 37-41.
de Souza, A. R., da Costa Demonte, A. L., de Araujo Costa, K., Faria, M. A., Duraes-Carvalho, R., Lancellotti, M., & Bonafe, C. F. (2013). Potentiation of high hydrostatic pressure inactivation of Mycobacterium by combination with physical and chemical conditions. Applied Microbiology and Biotechnology, 97(16), 7417-7425.
De Vleeschouwer, K., Van der Plancken, I., Van Loey, A., & Hendrickx, M. E. (2010). The effect of high pressure-high temperature processing conditions on acrylamide formation and other Maillard reaction compounds. Journal of Agricultural and Food Chemistry, 58(22), 11740-11748.
Del Olmo, A., Calzada, J., & Nuñez, M. (2012). Effect of lactoferrin and its derivatives, high hydrostatic pressure, and their combinations, on Escherichia coli O157: H7 and Pseudomonas fluorescens in chicken filets. Innovative Food Science & Emerging Technologies, 13, 51-56.
Diels, A. M., Callewaert, L., Wuytack, E. Y., Masschalck, B., & Michiels, C. W. (2005). Inactivation of Escherichia coli by high-pressure homogenisation is influenced by fluid viscosity but not by water activity and product composition. International Journal of Food Microbiology, 101(3), 281-291.
Dogan, C., & Erkmen, O. (2004). High pressure inactivation kinetics of Listeria monocytogenes inactivation in broth, milk, and peach and orange juices. Journal of Food Engineering, 62(1), 47-52.
Dong, F. M., Cook, A. R., & Herwig, R. P. (2003). High hydrostatic pressure treatment of finish to inactivate Anisakis simplex. Journal of Food Protection, 66(10), 1924-1926.
Doona, C. J., Feeherry, F. E., Ross, E. W., & Kustin, K. (2012). Inactivation kinetics of Listeria monocytogenes by high-pressure processing: Pressure and temperature variation. Journal of Food Science, 77(8), 458-465.
Doona, C. J., Ghosh, S., Feeherry, F. F., Ramirez-Peralta, A., Huang, Y., Chen, H., & Setlow, P. (2014). High pressure germination of Bacillus subtilis spores with alterations in levels and types of germination proteins. Journal of Applied Microbiology, 117(3), 711-720.
Dumard, C. H., Barroso, S. P., de Oliveira, G. A., Carvalho, C. A., Gomes, A. M., Couceiro, J. N. S., D. F. Ferreira, D. Nico, A. C Oliveira, J. L. Silva, & Silva, J. L. (2013). Full inactivation of human influenza virus by high hydrostatic pressure preserves virus structure and membrane fusion while conferring protection to mice against infection. PLoS One, 8(11), e80785.
Dumay, E., Chevalier-Lucia, D., & López-Pedemante, T. (2010). High pressure and food conservation. P. Sébert Comparative High Pressure Biology, 85-118. Boca Raton: CRC Press.
Durães-Carvalho, R., Souza, A. R., Martins, L. M., Sprogis, A., Bispo, J. A., Bonafe, C. F., & Yano, T. (2012). Effect of high hydrostatic pressure on Aeromonas hydrophila AH 191 growth in milk. Journal of Food Science, 77(8), 417-424.
Duru, I. C., Andreevskaya, M., Laine, P., Rode, T. M., Ylinen, A., Løvdal, T., Bar, N., Crauwels, P., Riedel, C. U., Bucur, F. I., Nicolau, A. I., & Auvinen, P. (2020). Genomic characterization of the most barotolerant Listeria monocytogenes RO15 strain compared to reference strains used to evaluate food high pressure processing. BMC Genomics 21, 455.
EC. (1997). Regulation (EC) no 258/97 of the European Parliament and of the Council of 27 January 1991 concerning novel foods and novel food ingredients.
EC. (2003). Integrated product policy: Building on environmental life-cycle thinking: Communication from the Commission to the Council and the European Parliament.
EC. (2011). Commission Regulation (EU) No 10/2011 of 14 January 2011 on plastic materials and articles intended to come into contact with food text with EEA relevance.
Eisenmenger, M. J., & Reyes-De-Corcuera, J. I. (2009). High pressure enhancement of enzymes: A review. Enzyme and Microbial Technology, 45(5), 331-347.
Elamin, W. M., Endan, J. B., Yosuf, Y. A., Shamsudin, R., & Ahmedov, A. (2015). High pressure processing technology and equipment evolution: A review. Journal of Engineering Science and Technology Review, 8(5), 75-83.
Emmoth, E., Rovira, J., Rajkovic, A., Corcuera, E., Wilches Perez, D., Dergel, I., J. R Ottoson, & Widen, F. (2017). Inactivation of viruses and bacteriophages as models for swine hepatitis E virus in food matrices. Food and Environmental Virology, 9(1), 20-34.
Ettayebi, K., Crawford, S. E., Murakami, K., Broughman, J. R., Karandikar, U., Tenge, V. R., Neill FH, Blutt SE, Zeng XL, Qu L, Kou B, Opekun AR, Burrin D, Graham DY, Ramani S, Atmar RL, & Estes, M. K. (2016). Replication of human noroviruses in stem cell-derived human enteroids. Science, 353(6306), 1387-1393.
FAO/WHO. (2014). Multicriteria-based ranking for risk management of food-borne parasites. Retrieved from http://www.fao.org/3/a-i3649e.pdf
Fernández-García, F., Butz, P., & Tauscher, B. (2001). Effects of high-pressure processing on carotenoid extractability, antioxidant activity, glucose diffusion, and water binding of tomato puree (Lycopersicon esculentum Mill.). Journal of Food Science, 66(7), 1033-1038.
Fernandez, A., Butz, P., & Tauscher, B. (2009). IgE binding capacity of apple allergens preserved after high pressure treatment. High Pressure Research, 29(4), 705-712.
Franco, I., Castillo, E., Perez, M.-D., Calvo, M., & Sanchez, L. (2012). Effects of hydrostatic high pressure on the structure and antibacterial activity of recombinant human lactoferrin from transgenic rice. Bioscience, Biotechnology, and Biochemistry, 76(1), 53-59.
Franssen, F., Gerard, C., Cozma-Petruţ, A., Vieira-Pinto, M., Jambrak, A. R., Rowan, N., P. Paulsen, M. Rozycki, K. Tysnes, D. Rodriguez-Lazaro, & Robertson, L. (2019). Inactivation of parasite transmission stages: Efficacy of treatments on food of animal origin. Trends in Food Science & Technology, 83, 114-128.
Fuentes, V., Ventanas, J., Morcuende, D., Estevez, M., & Ventanas, S. (2010). Lipid and protein oxidation and sensory properties of vacuum-packaged dry-cured ham subjected to high hydrostatic pressure. Meat Science, 85(3), 506-514.
Garcia-Graells, C., Hauben, K. J., & Michiels, C. W. (1998). High-pressure inactivation and sublethal injury of pressure-resistant Escherichia coli mutants in fruit juices. Applied and Environmental Microbiology, 64(4), 1566-1568.
Garcia-Hernandez, R., McMullen, L., & Gänzle, M. G. (2015). Development and validation of a surrogate strain cocktail to evaluate bactericidal effects of pressure on verotoxigenic Escherichia coli. International Journal of Food Microbiology, 205, 16-22.
Gayán, E., Condón, S., Álvarez, I., Nabakabaya, M., & Mackey, B. (2013). Effect of pressure-induced changes in the ionization equilibria of buffers on inactivation of Escherichia coli and Staphylococcus aureus by high hydrostatic pressure. Applied and Environmental Microbiology, 79(13), 4041-4047.
Georget, E., Kapoor, S., Winter, R., Reineke, K., Song, Y., Callanan, M., E. Ananta, V. Heinz, & Mathys, A. (2014). In situ investigation of Geobacillus stearothermophilus spore germination and inactivation mechanisms under moderate high pressure. Food Microbiology, 41, 8-18.
Georget, E., Sevenich, R., Reineke, K., Mathys, A., Heinz, V., Callanan, M., C. Rauh, & Knorr, D. (2015). Inactivation of microorganisms by high isostatic pressure processing in complex matrices: A review. Innovative Food Science & Emerging Technologies, 27, 1-14.
Gérard, C., Franssen, F., La Carbona, S., Monteiro, S., Cozma-Petruţ, A., Utaaker, K. S., A. R. Jambrak, N. Rowan, D. Rodríguez-Lazaro, A. Nasser, K. Tysnes, & Nasser, A. (2019). Inactivation of parasite transmission stages: Efficacy of treatments on foods of non-animal origin. Trends in Food Science & Technology, 91, 12-23.
Giannini, P., Jermini, M., Leggeri, L., Nuesch-Inderbinen, M., & Stephan, R. (2018). Detection of hepatitis E virus RNA in raw cured sausages and raw cured sausages containing pig liver at retail stores in Switzerland. Journal of Food Protection, 81(1), 43-45.
Gill, A., & Ramaswamy, H. O. (2008). Application of high pressure processing to kill Escherichia coli O157 in ready-to-eat meats. Journal of Food Protection, 71(11), 2182-2189.
Goedkoop, M., Heijungs, R., Huijbregts, M., Schryver, A. D., Struijs, J., & Van Zelm, R. (2013). A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level. ReCiPe 2008. First edition (version 1.08). Report I: Characterisation. Retrieved from www.lcia-recipe.net.
Goedkoop, M., & Spriensma, R. (2001). The Eco-indicator 99. A damage oriented method for life cycle impact assessment (3rd ed.) Amersfoort. Retrieved from www.pre-sustainability.com/download/EI99_annexe_v3.pdf.
Gómez-Maqueo, A., Welti-Chanes, J., & Cano, M. P. (2020). Release mechanisms of bioactive compounds in fruits submitted to high hydrostatic pressure: A dynamic microstructural analysis based on prickly pear cells. Food Research International, 130, 108909.
González-Angulo, M., Serment-Moreno, V., Queirós, R. P., & Tonello-Samson, C. (2021). 1.03 - Food and beverage commercial applications of high pressure processing. In K. Knoerzer & K. Muthukumarappan (Eds.), Innovative food processing technologies (pp. 39-73). Oxford: Elsevier.
Gonzalez, M. E., & Barrett, D. M. (2010). Thermal, high pressure, and electric field processing effects on plant cell membrane integrity and relevance to fruit and vegetable quality. Journal of Food Science, 75(7), R121-R130.
Gould, G., & Sale, A. (1970). Initiation of germination of bacterial spores by hydrostatic pressure. Microbiology, 60(3), 335-346.
Grainger, M. N. C., Manley-Harris, M., Fauzi, N. A. M., & Farid, M. M. (2014). Effect of high pressure processing on the conversion of dihydroxyacetone to methylglyoxal in New Zealand Mānuka (Leptospermum scoparium) honey and models thereof. Food Chemistry, 153, 134-139.
Guan, Y.-G., Yu, P., Yu, S.-J., Xu, X.-B., Shi, W.-H., & Sun, W.-W. (2011). Effects of pressure on the glucose-ammonium sulphite caramel solutions. Food Chemistry, 127(2), 596-601.
Gudbjornsdottir, B., Jonsson, A., Hafsteinsson, H., & Heinz, V. (2010). Effect of high-pressure processing on Listeria spp. and on the textural and microstructural properties of cold smoked salmon. LWT-Food Science and Technology, 43(2), 366-374.
Guerrero-Beltrán, J. A., Estrada-Girón, Y., Swanson, B. G., & Barbosa-Cánovas, G. V. (2009). Pressure and temperature combination for inactivation of soymilk trypsin inhibitors. Food Chemistry, 116(3), 676-679.
Guinée, J. B., Heijungs, R., Huppes, G., Zamagni, A., Masoni, P., Buonamici, R., T. Ekvall, & Rydberg, T. (2011). Life cycle assessment: Past, present, and future. Environmental Science & Technology, 45, 90-96.
Gupta, R., & Balasubramaniam, V. M. (2012). High-pressure processing of fluid foods. In P. J. Cullen, B. K. Tiwari, & V. P. Valdramidis (Eds.), Novel thermal and non-thermal technologies for fluid foods (pp. 109-134). London: Elsevier Inc.
Guyon, C., Meynier, A., & de Lamballerie, M. (2016). Protein and lipid oxidation in meat: A review with emphasis on high-pressure treatments. Trends in Food Science & Technology, 50, 131-143.
Gutelius, D., Hokeness, K., Logan, S. M., & Reid, C. W. (2014). Functional analysis of SleC from Clostridium difficile: An essential lytic transglycosylase involved in spore germination. Microbiology, 160(1), 209-216.
Han, I. H., & Baik, B.-K. (2006). Oligosaccharide content and composition of legumes and their reduction by soaking, cooking, ultrasound, and high hydrostatic pressure. Cereal Chemistry, 83(4), 428-433.
Hao, H., Zhou, T., Koutchma, T., Wu, F., & Warriner, K. (2016). High hydrostatic pressure assisted degradation of patulin in fruit and vegetable juice blends. Food Control, 62, 237-242.
Hartmann, C. (2002). Numerical simulation of thermodynamic and fluid-dynamic processes during the high-pressure treatment of fluid food systems. Innovative Food Science & Emerging Technologies, 3(1), 11-18.
Hartmann, C., & Delgado, A. (2002). Numerical simulation of convective and diffusive transport effects on a high-pressure-induced inactivation process. Biotechnology and Bioengineering, 79(1), 94-104.
Hartmann, C., & Delgado, A. (2003). The influence of transport phenomena during high-pressure processing of packed food on the uniformity of enzyme inactivation. Biotechnology and Bioengineering, 82(6), 725-735.
Hartmann, C., Delgado, A., & Szymczyk, J. (2003). Convective and diffusive transport effects in a high pressure induced inactivation process of packed food. Journal of Food Engineering, 59(1), 33-44.
Hauben, K. J., Wuytack, E. Y., Soontjens, C. C., & Michiels, C. W. (1996). High-pressure transient sensitization of Escherichia coli to lysozyme and nisin by disruption of outer-membrane permeability. Journal of Food Protection, 59(4), 350-355.
Hawley, S. (1978). [2]High-pressure techniques. Methods in Enzymology, 49, 14-24.
Hayashi, R. (2002). Trends in high pressure bioscience and biotechnology. Elsevier Science.
Heinz, V., & Buckow, R. (2009). Food preservation by high pressure. Journal für Verbraucherschutz und Lebensmittelsicherheit, 5(1), 73-81.
Heinz, V., & Knorr, D. (1996). High pressure inactivation kinetics of bacillus subtilis cells by a three-state-model considering distributed resistance mechanisms. Food Biotechnology, 10(2), 149-161.
Hellwig, M., & Henle, T. (2014). Baking, ageing, diabetes: A short history of the Maillard reaction. Angewandte Chemie International Edition, 53(39), 10316-10329.
Hendrickx, M., & Knorr, D. (2001). Ultra high pressure treatments of foods. New York: Springer US.
Henle, T. (2003). AGEs in foods: Do they play a role in uremia? Kidney International Supplements, 63, 145-147.
Henle, T. (2007). Dietary advanced glycation end products-A risk to human health? A call for an interdisciplinary debate. Molecular Nutrition & Food Research, 51(9), 1075-1078.
Hereu, A., Bover-Cid, S., Garriga, M., & Aymerich, T. (2012). High hydrostatic pressure and biopreservation of dry-cured ham to meet the food safety objectives for Listeria monocytogenes. International Journal of Food Microbiology, 154(3), 107-112.
Heroldova, M., Houska, M., Vavrova, H., Kucera, P., Setinova, I., Honzova, S., M. Kminkova, J. Strohalm, P. Novotna, & Proskova, A. (2009). Influence of high-pressure treatment on allergenicity of rDau c1 and carrot juice demonstrated by in vitro and in vivo tests. High Pressure Research, 29(4), 695-704.
Hildebrandt, S., Schütte, L., Stoyanov, S., Hammer, G., Steinhart, H., & Paschke, A. (2010). In vitro determination of the allergenic potential of egg white in processed meat. Journal of Allergy, 2010, 238-573.
Hill, V. M., Isaacs, N. S., Ledward, D. A., & Ames, J. M. (1999). Effect of high hydrostatic pressure on the volatile components of a glucose-lysine model system. Journal of Agricultural and Food Chemistry, 47(9), 3675-3681.
Hill, V. M., Ledward, D. A., & Ames, J. M. (1996). Influence of high hydrostatic pressure and pH on the rate of Maillard browning in a glucose−lysine system. Journal of Agricultural and Food Chemistry, 44(2), 594-598.
Hiremath, N. D., & Ramaswamy, H. S. (2012). High-pressure destruction kinetics of spoilage and pathogenic microorganisms in mango juice. Journal of Food Processing and Preservation, 36(2), 113-125.
Hite, B. H. (1899). The effect of pressure in the preservation of milk (A preliminary report). West Virginia University. Agricultural Experiment Station. Retrieved from https://archive.org/details/effectofpressure58hite.
Hite, B. H. (1914). The effect of pressure on certain micro-organisms encountered in the preservation of fruits and vegetables (Technical bulletin). West Virginia University. Agricultural Experiment Station. Retrieved from https://archive.org/details/effectofpressure146hite.
Hodge, J. (1953). Chemistry of browning reactions in model systems. Journal of Agricultural and Food Chemistry, 1, 928-943.
Hölters, C., Van Almsick, G., & Ludwig, H. (1999). High pressure inactivation of anaerobic spores from Clostridium pasteurianum. In H. Ludwig Advances in high pressure bioscience and biotechnology (pp. 65-68). Berlin: Springer.
Houska, M., Heroldova, M., Vavrova, H., Kucera, P., Setinova, I., Havranova, M., S. Honzova, J. Strohalm, M. Kminkova, A. Proskova, & Proskova, A. (2009). Is high-pressure treatment able to modify the allergenicity of the main apple juice allergen, Mal d1? High Pressure Research, 29(1), 14-22.
Houska, M., Kminkova, M., Strohalm, J., Setinova, I., Heroldova, M., Novotna, P., S. Honzova, H. Vavrova, P. Kucera, & Proskova, A. (2009). Allergenicity of main celery allergen rApi g1 and high-pressure treatment. High Pressure Research, 29(4), 686-694.
HPBB, High Pressure Bioscience and Biotechnology. (2016). Traces of the discovery of the functions of pressure. http://www.hpbb.wzw.tum.de/history/.
Hsu, H., Sheen, S., Sites, J., Huang, L., & Wu, J. S.-B. (2014). Effect of high pressure treatment on the survival of Shiga toxin-producing Escherichia coli in strawberry puree. Food Microbiology, 40, 25-30.
Huang, H.-W., Wu, S.-J., Lu, J.-K., Shyu, Y.-T., & Wang, C.-Y. (2017). Current status and future trends of high-pressure processing in food industry. Food Control, 72, 1-8.
Huang, H. W., Hsu, C. P., Yang, B. B., & Wang, C. Y. (2014). Potential utility of high-pressure processing to address the risk of food allergen concerns. Comprehensive Reviews in Food Science and Food Safety, 13(1), 78-90.
Huang, R., Li, X., Huang, Y., & Chen, H. (2014). Strategies to enhance high pressure inactivation of murine norovirus in strawberry puree and on strawberries. International Journal of Food Microbiology, 185, 1-6.
Huang, Y., Ye, M., & Chen, H. (2013). Inactivation of Escherichia coli O157: H7 and Salmonella spp. in strawberry puree by high hydrostatic pressure with/without subsequent frozen storage. International Journal of Food Microbiology, 160(3), 337-343.
Husband, F. A., Aldick, T., Van der Plancken, I., Grauwet, T., Hendrickx, M., Skypala, I., & Mackie, A. R. (2011). High-pressure treatment reduces the immunoreactivity of the major allergens in apple and celeriac. Molecular Nutrition & Food Research, 55(7), 1087-1095.
Iizuka, T., Maeda, S., & Shimizu, A. (2013). Removal of pesticide residue in cherry tomato by hydrostatic pressure. Journal of Food Engineering, 116(4), 796-800.
Inanoglu, S., Barbosa-Cánovas, G. V., Patel, J., Zhu, M.-J., Liu, F., Tang, Z., & Tang, J. (2020). Impact of high-pressure and microwave-assisted thermal pasteurization on inactivation of Listeria innocua and quality attributes of green beans. Journal of Food Engineering, 110162. 288, 110-162.
Isaacs, N. S., & Coulson, M. (1996). The effect of pressure on processes modelling the Maillard reaction. Progress in Biotechnology, 13, 479-484.
Isbarn, S., Buckow, R., Himmelreich, A., Lehmacher, A., & Heinz, V. (2007). Inactivation of avian influenza virus by heat and high hydrostatic pressure. Journal of Food Protection, 70(3), 667-673.
Islam, M. S., Inoue, A., Igura, N., Shimoda, M., & Hayakawa, I. (2006). Inactivation of Bacillus spores by the combination of moderate heat and low hydrostatic pressure in ketchup and potage. International Journal of Food Microbiology, 107(2), 124-130.
Jackowska-Tracz, A., & Tracz, M. (2015). Effects of high hydrostatic pressure on Campylobacter jejuni in poultry meat. Polish Journal of Veterinary Sciences, 18(2), 261-266.
Jaeger, H., Reineke, K., Schoessler, K., & Knorr, D. (2012). Effects of emerging processing technologies on food material properties. In B. Bhandari & Y. H. Roos (Eds.), Food materials science and engineering (pp. 222-262). Wiley-Blackwell.
Jankiewicz, A., Baltes, W., Bögl, K. W., Dehne, L. I., Jamin, A., Hoffmann, A., D. Haustein, & Vieths, S. (1997). Influence of food processing on the immunochemical stability of celery allergens. Science of Food and Agriculture, 75(3), 359-370.
Jin, Y., Deng, Y., Qian, B., Zhang, Y., Liu, Z., & Zhao, Y. (2015). Allergenic response to squid (Todarodes pacificus) tropomyosin Tod p1 structure modifications induced by high hydrostatic pressure. Food and Chemical Toxicology, 76, 86-93.
Jofré, A., Aymerich, T., Grèbol, N., & Garriga, M. (2009). Efficiency of high hydrostatic pressure at 600 MPa against food-borne microorganisms by challenge tests on convenience meat products. LWT-Food Science and Technology, 42(5), 924-928.
Jolie, R. P., Christiaens, S., De Roeck, A., Fraeye, I., Houben, K., Van Buggenhout, S., A. van Loey, & Hendrickx, M. E. (2012). Pectin conversions under high pressure: Implications for the structure-related quality characteristics of plant-based foods. Trends in Food Science & Technology, 24(2), 103-118.
Jolliet, O., Margni, M., Charles, R., Humbert, S., Payet, J., Rebitzer, G., & Rosenbaum, R. (2003). IMPACT 2002+: A new life cycle impact assessment methodology. International Journal of Life Cycle Assessment, 8, 324-330.
Jones, M. K., Watanabe, M., Zhu, S., Graves, C. L., Keyes, L. R., Grau, K. R., M. B Gonzalez-Hernandez, N. M Iovine, C. E Wobus, J. Vinjé, S. A Tibbetts, S. M Wallet, & Karst, S. M. (2014). Enteric bacteria promote human and mouse norovirus infection of B cells. Science, 346(6210), 755-759.
Jordan, C. N., Zajac, A. M., Holliman, D., Flick, G. J., & Lindsay, D. S. (2005). Effects of high-pressure processing on in vitro infectivity of Encephalitozoon cuniculi. Journal of Parasitology, 91(6), 1487-1488.
Juliano, P., Knoerzer, K., & Barbosa-Canovas, G. (2009). High pressure thermal processes: Thermal and fluid dynamic modeling principles. In R. Simpson (Ed.), Engineering aspects of thermal food processing (Vol. 1, pp. 93-161). Boca Raton, FL: CRC Press.
Juliano, P., Knoerzer, K., Fryer, P. J., & Versteeg, C. (2009). C. botulinum inactivation kinetics implemented in a computational model of a high-pressure sterilization process. Biotechnology Progress, 25(1), 163-175.
Juliano, P., Koutchma, T., Sui, Q., Barbosa-Ca´novas, G., & Sadler, G. (2010). Polymeric-based food packaging for high-pressure processing. Food Engineering Reviews, 2, 274-297.
Jung, S., Lee, M.-S., Shin, Y., Kim, C.-T., Kim, I.-H., Kim, Y. S., & Kim, Y. (2014). Anti-obesity and anti-inflammatory effects of high hydrostatic pressure extracts of ginseng in high-fat diet induced obese rats. Journal of Functional Foods, 10, 169-177.
Kadlec, P., Dostálová, J., Houška, M., Strohalm, J., & Bubník, Z. (2006). Evaluation of α-galactosides decrease during storage of germinated pea seeds treated by high pressure. Journal of Food Engineering, 77(2), 364-367.
Kadlec, P., Dostálová, J., Houška, M., Strohalm, J., Culková, J., Hinková, A., & Štarhová, H. (2006). High pressure treatment of germinated chickpea Cicer arietinum L. seeds. Journal of Food Engineering, 77(3), 445-448.
Kaletunç, G., Lee, J., Alpas, H., & Bozoglu, F. (2004). Evaluation of structural changes induced by high hydrostatic pressure in Leuconostoc mesenteroides. Applied and Environmental Microbiology, 70(2), 1116-1122.
Kebede, B., Grauwet, T., Andargie, T., Sempiri, G., Palmers, S., Hendrickx, M., & Van Loey, A. (2017). Kinetics of Strecker aldehyde formation during thermal and high pressure high temperature processing of carrot puree. Innovative Food Science & Emerging Technologies, 39, 88-93.
Kebede, B. T., Grauwet, T., Tabilo-Munizaga, G., Palmers, S., Vervoort, L., Hendrickx, M., & Van Loey, A. (2013). Headspace components that discriminate between thermal and high pressure high temperature treated green vegetables: Identification and linkage to possible process-induced chemical changes. Food Chemistry, 141(3), 1603-1613.
Keramat, J., Lebail, A., Prost, C., & Soltanizadeh, N. (2011). Acrylamide in foods: Chemistry and analysis. A review. Food and Bioprocess Technology, 4, 340-363.
Kim, K. W., Kim, Y.-T., Kim, M., Noh, B.-S., & Choi, W.-S. (2014). Effect of high hydrostatic pressure (HHP) treatment on flavor, physicochemical properties and biological functionalities of garlic. LWT-Food Science and Technology, 55(1), 347-354.
Kimura, K., Ida, M., Yosida, Y., Ohki, K., Fukumoto, T., & Sakui, N. (1994). Comparison of keeping quality between pressure-processed jam and heat-processed jam: Changes in flavor components, hue, and nutrients during storage. Bioscience, Biotechnology, and Biochemistry, 58(8), 1368-1391.
Kingsley, D. H., & Chen, H. (2008). Aqueous matrix compositions and pH influence feline calicivirus inactivation by high pressure processing. Journal of Food Protection, 71(8), 1598-1603.
Kingsley, D. H., & Chen, H. (2009). Influence of pH, salt, and temperature on pressure inactivation of hepatitis A virus. International Journal of Food Microbiology, 130(1), 61-64.
Kingsley, D. H., Chen, H., & Hoover, D. G. (2004). Inactivation of selected picornaviruses by high hydrostatic pressure. Virus Research, 102(2), 221-224.
Kingsley, D. H., Hoover, D. G., Papafragkou, E., & Richards, G. P. (2002). Inactivation of hepatitis A virus and a calicivirus by high hydrostatic pressure. Journal of Food Protection, 65(10), 1605-1609.
Klotz, B., Mañas, P., & Mackey, B. M. (2010). The relationship between membrane damage, release of protein and loss of viability in Escherichia coli exposed to high hydrostatic pressure. International Journal of Food Microbiology, 137(2), 214-220.
Klotz, B., Pyle, D. L., & Mackey, B. M. (2007). New mathematical modeling approach for predicting microbial inactivation by high hydrostatic pressure. Applied and Environmental Microbiology, 73(8), 2468-2478.
Kniel, K. E., Shearer, A. E., Cascarino, J. L., Wilkins, G. C., & Jenkins, M. C. (2007). High hydrostatic pressure and UV light treatment of produce contaminated with Eimeria acervulina as a Cyclospora cayetanensis surrogate. Journal of Food Protection, 70(12), 2837-2842.
Knockaert, G., De Roeck, A., Lemmens, L., Van Buggenhout, S., Hendrickx, M., & Van Loey, A. (2011). Effect of thermal and high pressure processes on structural and health-related properties of carrots (Daucus carota). Food Chemistry, 125(3), 903-912.
Knoerzer, K., Buckow, R., Chapman, B., Juliano, P., & Versteeg, C. (2010). Carrier optimisation in a pilot-scale high pressure sterilisation plant - An iterative CFD approach employing an integrated temperature distributor (ITD). Journal of Food Engineering, 97(2), 199-207.
Knoerzer, K., Buckow, R., Sanguansri, P., & Versteeg, C. (2010). Adiabatic compression heating coefficients for high-pressure processing of water, propylene-glycol and mixtures - A combined experimental and numerical approach. Journal of Food Engineering, 96(2), 229-238.
Knoerzer, K., Juliano, P., Gladman, S., Versteeg, C., & Fryer, P. J. (2007). A computational model for temperature and sterility distributions in a pilot-scale high-pressure high-temperature process. AIChE Journal, 53(11), 2996-3010.
Knorr, D., Froehling, A., Jaeger, H., Reineke, K., Schlueter, O., & Schoessler, K. (2011). Emerging technologies in food processing. Annual Review of Food Science and Technology, 2, 203-235.
Knorr, D., Heinz, V., & Buckow, R. (2006). High pressure application for food biopolymers. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1764(3), 619-631.
Knorr, D., Reineke, K., Mathys, A., Heinz, V., & Buckow, R. (2011). High-pressure-induced effects on bacterial spores, vegetative microorganisms, and enzymes. In J. M. Aguilera, R. Simpson, J. Welti-Chanes, D. Bermudez-Aguirre, & G. Barbosa-Canovas (Eds.), Food engineering interfaces (pp. 325-340). New York: Springer.
Kong, L., Doona, C. J., Setlow, P., & Li, Y.-Q. (2014). Monitoring rates and heterogeneity of high-pressure germination of Bacillus spores by phase-contrast microscopy of individual spores. Applied and Environmental Microbiology, 80(1), 345-353.
Koo, J., Jahncke, M. L., Reno, P. W., Hu, X., & Mallikarjunan, P. (2006). Inactivation of Vibrio parahaemolyticus and Vibrio vulnificus in phosphate-buffered saline and in inoculated whole oysters by high-pressure processing. Journal of Food Protection, 69(3), 596-601.
Koschinsky, T., He, C. J., Mitsuhashi, T., Bucala, R., Liu, C., Buenting, C., K Heitmann, & Vlassara, H. (1997). Orally absorbed reactive glycation products (glycotoxins): An environmental risk factor in diabetic nephropathy. Proceedings of the National Academy of Sciences of the United States of America, 94(12), 6474-6479.
Koseki, S., & Yamamoto, K. (2007). A novel approach to predicting microbial inactivation kinetics during high pressure processing. International Journal of Food Microbiology, 116(2), 275-282.
Koutchma, T. (2014). Adapting high hydrostatic pressure (HPP) for food processing operations. Academic Press.
Kovac, K., Bouwknegt, M., Diez-Valcarce, M., Raspor, P., Hernandez, M., & Rodriguez-Lazaro, D. (2012). Evaluation of high hydrostatic pressure effect on human adenovirus using molecular methods and cell culture. International Journal of Food Microbiology, 157(3), 368-374.
Krebbers, B., Matser, A. M., Hoogerwerf, S. W., Moezelaar, R., Tomassen, M. M. M., & van den Berg, R. W. (2003). Combined high-pressure and thermal treatments for processing of tomato puree: Evaluation of microbial inactivation and quality parameters. Innovative Food Science & Emerging Technologies, 4(4), 377-385.
Kudla, E., & Tomasik, P. (1992a). The modification of starch by high pressure. Part I: Air-and oven-dried potato starch. Starch-Stärke, 44(5), 167-173.
Kudla, E., & Tomasik, P. (1992b). The modification of starch by high pressure. Part II: Compression of starch with additives. Starch-Stärke, 44(7), 253-259.
Lado, B. H., & Yousef, A. E. (2002). Alternative food-preservation technologies: Efficacy and mechanisms. Microbes and Infection, 4(4), 433-440.
Lambert, Y., Demazeau, G., Largeteau, A., Bouvier, J., Laborde-Croubit, S., & Cabannes, M. (2000a). New packaging solutions for high pressure treatments of food. High Pressure Research, 19, 597-602.
Lambert, Y., Demazeau, G., Largeteau, A., Bouvier, J., Laborde-Croubit, S., & Cabannes, M. (2000b). Packaging for high-pressure treatments in the food industry. Packaging Technology and Science, 13(2), 63-71.
Lamo-Castellví, S., Toledo, R., & Frank, J. F. (2013). Observation of injured E. coli population resulting from the application of high-pressure throttling treatments. Journal of Food Science, 78(4), M582-M586.
Le Bail, P., Chauvet, B., Simonin, H., Rondeau-Mouro, C., Pontoire, B., de Carvalho, M., & Le-Bail, A. (2013). Formation and stability of amylose ligand complexes formed by high pressure treatment. Innovative Food Science & Emerging Technologies, 18, 1-6.
Lee, C., In, S., Han, Y., & Oh, S. (2016). Reactivity change of IgE to buckwheat protein treated with high-pressure and enzymatic hydrolysis. Journal of the Science of Food and Agriculture, 96(6), 2073-2079.
Lee, J., Choi, E.-J., Park, S. Y., Jeon, G. Y., Jang, J.-Y., Oh, Y. J., S. K. Lim, M.-S. Kwon, T.-W. Kim, J.-H. Lee, H. W. Park, H. J. Kim, J. S. Kang, J. T. Jeon, & Lee, J.-H. (2016). High-pressure processing of milk alleviates atopic dermatitis in DNCB-induced Balb/c mice. Dairy Science & Technology, 96(1), 67-78.
Lee, K. H., Park, S. Y., & Ha, S. D. (2016). Inactivation of Anisakis simplex L3 in the flesh of white spotted conger (Conger myriaster) by high hydrostatic pressure and its effect on quality. Food Additives & Contaminants: Part A, 33(6), 1010-1015.
Lee, M. B., & Lee, E.-H. (2001). Coccidial contamination of raspberries: Mock contamination with Eimeria acervulina as a model for decontamination treatment studies. Journal of Food Protection, 64(11), 1854-1857.
Lee, Y. C., Hsieh, C. Y., Chen, M. L., Wang, C. Y., Lin, C. S., & Tsai, Y. H. (2020). High-pressure inactivation of histamine-forming bacteria Morganella morganii and Photobacterium phosphoreum. Journal of Food Protection, 83(4), 621-627.
Lenz, C. A., Reineke, K., Knorr, D., & Vogel, R. F. (2015). High pressure thermal inactivation of Clostridium botulinum type E endospores - Kinetic modeling and mechanistic insights. Frontiers in Microbiology, 6, 652.
Lenz, C. A., & Vogel, R. F. (2015). Pressure-based strategy for the inactivation of spores. Subcellular Biochemistry, 72, 469-537.
Leon, J. S., Kingsley, D. H., Montes, J. S., Richards, G. P., Lyon, G. M., Abdulhafid, G. M., S. R Seitz, M. L Fernandez, P. F Teunis, Flick, G. J., & C. L Moe (2011). Randomized, double-blinded clinical trial for human norovirus inactivation in oysters by high hydrostatic pressure processing. Applied and Environmental Microbiology, 77(15), 5476-5482.
Li, H., Zhu, K., Zhou, H., Peng, W., & Guo, X. (2016). Comparative study of four physical approaches about allergenicity of soybean protein isolate for infant formula. Food and Agricultural Immunology, 27(5), 604-623.
Li, X., Chen, H., & Kingsley, D. H. (2013). The influence of temperature, pH, and water immersion on the high hydrostatic pressure inactivation of GI. 1 and GII. 4 human noroviruses. International Journal of Food Microbiology, 167(2), 138-143.
Li, X., Huang, R., & Chen, H. (2017). Evaluation of assays to quantify infectious human norovirus for heat and high-pressure inactivation studies using Tulane virus. Food and Environmental Virology, 9(3), 314-325.
Li, Y., Yang, W., Chung, S.-Y., Chen, H., Ye, M., Teixeira, A. A., J. F. Gregory, B. A. Welt, & Shriver, S. (2013). Effect of pulsed ultraviolet light and high hydrostatic pressure on the antigenicity of almond protein extracts. Food and Bioprocess Technology, 6(2), 431-440.
Liang, J., Xu, J., Pan, J., Ge, M., & Zong, K. (2015). Identification of the main allergenic proteins in high hydrostatic pressure pineapple juice and assessing the influence of pressure on their allergenicity. International Journal of Food Properties, 18(10), 2134-2144.
Lindsay, D. S., Collins, M. V., Holliman, D., Flick, G. J., & Dubey, J. P. (2006). Effects of high-pressure processing on Toxoplasma gondii tissue cysts in ground pork. Journal of Parasitology, 92(1), 195-196.
Lindsay, D. S., Collins, M. V., Jordan, C. N., Flick, G. J., & Dubey, J. P. (2005). Effects of high pressure processing on infectivity of Toxoplasma gondii oocysts for mice. Journal of Parasitology, 91(3), 699-701.
Lindsay, D. S., Holliman, D., Flick, G. J., Goodwin, D. G., Mitchell, S. M., & Dubey, J. P. (2008). Effects of high pressure processing on Toxoplasma gondii oocysts on raspberries. Journal of Parasitology, 94(3), 757-758.
Linsberger-Martin, G., Weiglhofer, K., Phuong, T. P. T., & Berghofer, E. (2013). High hydrostatic pressure influences antinutritional factors and in vitro protein digestibility of split peas and whole white beans. LWT-Food Science and Technology, 51(1), 331-336.
Liu, C.-Y., Tao, S., Liu, R., Chen, F.-S., & Xue, W.-T. (2012). Is high pressure treatment able to modify the allergenicity of the largemouth bass allergens? High Pressure Research, 32(4), 551-556.
Liu, C., Zhao, M., Sun, W., & Ren, J. (2013). Effects of high hydrostatic pressure treatments on haemagglutination activity and structural conformations of phytohemagglutinin from red kidney bean (Phaseolus vulgaris). Food Chemistry, 136(3), 1358-1363.
Liu, F., Li, R., Wang, Y., Bi, X., & Liao, X. (2014). Effects of high hydrostatic pressure and high-temperature short-time on mango nectars: Changes in microorganisms, acid invertase, 5-hydroxymethylfurfural, sugars, viscosity, and cloud. Innovative Food Science & Emerging Technologies, 22, 22-30.
Liu, R., & Xue, W. (2010). High-pressure treatment with silver carp (Hypophthalmichthys molitrix) protein and its allergic analysis. High Pressure Research, 30(3), 438-442.
Loerting, T., Fuentes-Landete, V., Tonauer, C.M., & Gasser, M. (2020). Open questions on the structures of crystalline water ices. Communication Chemistry, 3, 109.
Long, F., Yang, X., Wang, R., Hu, X., & Chen, F. (2015). Effects of combined high pressure and thermal treatments on the allergenic potential of shrimp (Litopenaeus vannamei) tropomyosin in a mouse model of allergy. Innovative Food Science & Emerging Technologies, 29, 119-124.
Lopez-Exposito, I., Chicon, R., Belloque, J., Lopez-Fandino, R., & Berin, M. C. (2012). In vivo methods for testing allergenicity show that high hydrostatic pressure hydrolysates of beta-lactoglobulin are immunologically inert. Journal of Dairy Science, 95(2), 541-548.
Lou, F., DiCaprio, E., Li, X., Dai, X., Ma, Y., Hughes, J., H. Chen, D. H Kingsley, & Li, J. (2016). Variable high-pressure-processing sensitivities for genogroup II human noroviruses. Applied and Environmental Microbiology, 82(19), 6037-6045.
Lou, F., Neetoo, H., Chen, H., & Li, J. (2011). Inactivation of a human norovirus surrogate by high-pressure processing: Effectiveness, mechanism, and potential application in the fresh produce industry. Applied and Environmental Microbiology, 77(5), 1862-1871.
Lou, F., Ye, M., Ma, Y., Li, X., DiCaprio, E., Chen, H., Krakowka S, Hughes J, Kingsley D, & Li, J. (2015). A gnotobiotic pig model for determining human norovirus inactivation by high-pressure processing. Applied and Environmental Microbiology, 81(19), 6679-6687.
Lu, Y., Liu, C., Zhao, M., Cui, C., & Ren, J. (2015). Structure and activity changes of phytohemagglutinin from red kidney bean (Phaseolus vulgaris) affected by ultrahigh-pressure treatments. Journal of Agricultural and Food Chemistry, 63(43), 9513-9519.
Lund, M. N., Heinonen, M., Baron, C. P., & Estevez, M. (2011). Protein oxidation in muscle foods: A review. Molecular Nutrition & Food Research, 55(1), 83-95.
Ma, X., Lozano-Ojalvo, D., Chen, H., Lopez-Fandiño, R., & Molina, E. (2015). Effect of high pressure-assisted crosslinking of ovalbumin and egg white by transglutaminase on their potential allergenicity. Innovative Food Science & Emerging Technologies, 29, 143-150.
Ma, X. J., Gao, J. Y., Tong, P., Li, X., & Chen, H. B. (2017). Tracking the behavior of Maillard browning in lysine/arginine-sugar model systems under high hydrostatic pressure. Journal of the Science of Food and Agriculture, 97(15), 5168-5175.
Macfarlane, J. (1973). Pre-rigor pressurization of muscle: Effects on pH, shear value and taste panel assessment. Journal of Food Science, 38(2), 294-298.
Mahadevan, S., & Karwe, M. V. (2016). Effect of high-pressure processing on bioactive compounds. In V. M. Balasubramaniam, G. V. Barbosa-Cánovas, & H. L. M. Lelieveld (Eds.), High pressure processing of food: Principles, technology and applications (pp. 479-507). New York: Springer New York.
Maier, M. B., Schweiger, T., Lenz, C. A., & Vogel, R. F. (2018). Inactivation of non-proteolytic Clostridium botulinum type E in low-acid foods and phosphate buffer by heat and pressure. PLoS One, 13(7), e0200102.
Maier, M. B., Lenz, C. A., & Vogel, R. F. (2017). Non-linear pressure/temperature-dependence of high pressure thermal inactivation of proteolytic Clostridium botulinum type B in foods. PLoS One, 12(10), e0187023.
Marcos, B., Aymerich, T., Monfort, J. M., & Garriga, M. (2008). High-pressure processing and antimicrobial biodegradable packaging to control Listeria monocytogenes during storage of cooked ham. Food Microbiology, 25(1), 177-182.
Maresca, P., & Ferrari, G. (2017). Modeling of the microbial inactivation by high hydrostatic pressure freezing. Food Control, 73, 8-17.
Margosch, D. (2004). Behaviour of bacterial endospores and toxins as safety determinants in low acid pressurized food (PhD thesis). Technische Universität München.
Margosch, D., Ehrmann, M. A., Buckow, R., Heinz, V., Vogel, R. F., & Gänzle, M. G. (2006). High-pressure-mediated survival of Clostridium botulinum and Bacillus amyloliquefaciens endospores at high temperature. Applied and Environmental Microbiology, 72(5), 3476-3481.
Margosch, D., Ehrmann, M. A., Gänzle, M. G., & Vogel, R. F. (2003). Rolle der Dipicolinsäure bei der druckinduzierten Inaktivierung bakterieller Endosporen. Poster presentation at 5. Fachsymposium Lebensmittelmikrobiologie der VAAM und DGHM.
Margosch, D., Ehrmann, M. A., Gänzle, M. G., & Vogel, R. F. (2004). Comparison of pressure and heat resistance of Clostridium botulinum and other endospores in mashed carrots. Journal of Food Protection, 67(11), 2530-2537.
Margosch, D., Gänzle, M. G., Ehrmann, M. A., & Vogel, R. F. (2004). Pressure inactivation of Bacillus endospores. Applied and Environmental Microbiology, 70, 7321-7328.
Marketsandmarkets. (2016). High pressure processing equipment market by orientation type (horizontal and vertical), vessel volume, application (fruits & vegetables, meat, juice & beverages, seafood), end user category, and region. Global Forecast to 2022. Retrieved from https://www.marketsandmarkets.com/Market-Reports/hpp-market-1274.html.
Martínez-Monteagudo, S., & Saldaña, M. (2015). Kinetics of lactulose formation in milk treated with pressure-assisted thermal processing. Innovative Food Science & Emerging Technologies, 28, 22-30.
Martinez-Monteagudo, S. I., & Saldaña, M. D. (2014). Chemical reactions in food systems at high hydrostatic pressure. Food Engineering Reviews, 6(4), 105-127.
Marx, G., Moody, A., & Bermudez-Aguirre, D. (2011). A comparative study on the structure of Saccharomyces cerevisiae under nonthermal technologies: High hydrostatic pressure, pulsed electric fields and thermo-sonication. International Journal of Food Microbiology, 151(3), 327-337.
Masana, M. O., Barrio, Y. X., Palladino, P. M., Sancho, A. M., & Vaudagna, S. R. (2015). High pressure treatments combined with sodium lactate to inactivate Escherichia coli O157: H7 and spoilage microbiota in cured beef carpaccio. Food Microbiology, 46, 610-617.
Mathur, A. (2009). Pressure vessels and heat exchangers. In K.-H. Grote & E. K. Antonsson (Eds.), Springer handbook of mechanical engineering (pp. 947-966). Berlin, Heidelberg: Springer Berlin Heidelberg.
Mensitieri, G., Scherillo, G., & Iannace, S. (2013). Flexible packaging structures for high pressure treatments. Innovative Food Science & Emerging Technologies, 17, 12-21.
Mertens, B. (1995). Hydrostatic pressure treatment of food: Equipment and processing. In G. Gould (Ed.), New methods of food preservation (pp. 135-158). Dordrecht: Springer Science + Business Media.
Merwad, A. M. A., Mitchell, S. M., Zajac, A. M., Flick, G. J., & Lindsay, D. S. (2011). Effects of high pressure processing on hatching of eggs of the zoonotic rat tapeworm Hymenolepis diminuta. Veterinary Parasitology, 176(2-3), 185-188.
Meyer-Pittroff, R., Behrendt, H., & Ring, J. (2007). Specific immuno-modulation and therapy by means of high pressure treated allergens. High Pressure Research, 27(1), 63-67.
Mikami, N., Matsuno, M., Hara, T., Nishiumi, T., & Suzuki, A. (2007). Effects of high pressure treatment on IgE-specific binding activity and structure of bovine gamma globulin. High Pressure Bioscience and Biotechnology, 1(1), 245-251.
Mo, T., Gahr, A., Hansen, H., Hoel, E., Oaland, Ø., & Poppe, T. (2014). Presence of Anisakis simplex (Rudolphi, 1809 det. Krabbe, 1878) and Hysterothylacium aduncum (Rudolphi, 1802) (Nematoda; Anisakidae) in runts of farmed Atlantic salmon, Salmo salar L. Journal of Fish Diseases, 37(2), 135-140.
Molina-García, A. D., & Sanz, P. (2002). Anisakis simplex larva killed by high-hydrostatic-pressure processing. Journal of Food Protection, 65(2), 383-388.
Molina-Gutierrez, A., Stippl, V., Delgado, A., Gänzle, M. G., & Vogel, R. F. (2002). In situ determination of the intracellular pH of Lactococcus lactis and Lactobacillus plantarum during pressure treatment. Applied and Environmental Microbiology, 68(9), 4399-4406.
Molina-Höppner, A., Doster, W., Vogel, R. F., & Gänzle, M. G. (2004). Protective effect of sucrose and sodium chloride for Lactococcus lactis during sublethal and lethal high-pressure treatments. Applied and Environmental Microbiology, 70(4), 2013-2020.
Moltó-Puigmartí, C., Permanyer, M., Castellote, A. I., & López-Sabater, M. C. (2011). Effects of pasteurisation and high-pressure processing on vitamin C, tocopherols and fatty acids in mature human milk. Food Chemistry, 124(3), 697-702.
Monforti-Ferrario, F., & Pascua, I. P. (2015). Energy use in the EU food sector: State of play and opportunities for improvement. Publications Office.
Moody, A., Marx, G., Swanson, B. G., & Bermúdez-Aguirre, D. (2014). A comprehensive study on the inactivation of Escherichia coli under nonthermal technologies: High hydrostatic pressure, pulsed electric fields and ultrasound. Food Control, 37, 305-314.
Mor-Mur, M., & Saldo, J. (2012). High pressure processing. In D.-W. Sun (Ed.), Handbook of food safety engineering. (pp. 575-602). Chichester: Blackwell Publishing Ltd.
Moreno, F. J., Molina, E., Olano, A., & López-Fandiño, R. (2003). High-pressure effects on Maillard reaction between glucose and lysine. Journal of Agricultural and Food Chemistry, 51(2), 394-400.
Moreno, F. J., Vaillant-Barka, F., & Olano, A. (2003). Effect of high pressure on isomerization and degradation of lactose in alkaline media. Journal of Agricultural and Food Chemistry, 51, 1894-1896.
Moss, D. R., & Basic, M. (2013). High pressure vessels. In Moss D. & Basic M. Pressure vessel design manual (fourth edition) (pp. 473-556). Oxford: Butterworth-Heinemann.
Mota, M. J., Lopes, R. P., Delgadillo, I., & Saraiva, J. A. (2013). Microorganisms under high pressure-Adaptation, growth and biotechnological potential. Biotechnology Advances, 31(8), 1426-1434.
Mújica-Paz, H., Valdez-Fragoso, A., Samson, C. T., Welti-Chanes, J., & Torres, J. A. (2011). High-pressure processing technologies for the pasteurization and sterilization of foods. Food and Bioprocess Technology, 4(6), 969-985.
Nguyen, L. T., & Balasubramaniam, V. M. (2011). Fundamentals of food processing using high pressure. In H. Q. Zhang, G. V. Barbosa-Cánovas, V. M. Balasubramaniam, C. P. Dunne, D. F. Farkas, & J. T. C. Yuan (Eds.), Nonthermal processing technologies for food. (pp. 1-19). Chichester, West Sussex: Blackwell Publishing Ltd.
Niven, G. W., Miles, C. A., & Mackey, B. M. (1999). The effects of hydrostatic pressure on ribosome conformation in Escherichia coli: An in vivo study using differential scanning calorimetry. Microbiology, 145(2), 419-425.
(NZFS), New Zealand Food Safety. (2020). Further processing guidance document chapter 7: High-pressure processing. Proposed update to guidance document on further processing: High-pressure processing. Retrieved from https://www.mpi.govt.nz/news-and-resources/consultations/proposed-update-to-guidance-document-on-further-processing-high-pressure-processing/.
Odani, S., Kanda, Y., Hara, T., Matuno, M., & Suzuki, A. (2007). Effects of high hydrostatic pressure treatment on the allergenicity and structure of chicken egg white ovomucoid. High Pressure Bioscience and Biotechnology, 1(1), 252-258.
Oey, I., Lille, M., Van Loey, A., & Hendrickx, M. (2008). Effect of high-pressure processing on colour, texture and flavour of fruit- and vegetable-based food products: A review. Trends in Food Science & Technology, 19(6), 320-328.
Ogihara, H., Yatuzuka, M., Horie, N., Furukawa, S., & Yamasaki, M. (2009). Synergistic effect of high hydrostatic pressure treatment and food additives on the inactivation of Salmonella enteritidis. Food Control, 20(11), 963-966.
Ohnishi, Y., Ono, T., & Shigehisa, T. (1994). Histochemical and morphological studies on Trichinella spiralis larvae treated with high hydrostatic pressure. International Journal of Parasitology, 24(3), 425-427.
Olivier, S. A., Bull, M. K., Stone, G., van Diepenbeek, R. J., Kormelink, F., Jacops, L., & Chapman, B. (2011). Strong and consistently synergistic inactivation of spores of spoilage-associated Bacillus and Geobacillus spp. by high pressure and heat compared with inactivation by heat alone. Applied and Environmental Microbiology, 77(7), 2317-2324.
Otero, L., Ramos, A. M., de Elvira, C., & Sanz, P. D. (2007). A model to design high-pressure processes towards an uniform temperature distribution. Journal of Food Engineering, 78(4), 1463-1470.
Otero, L., & Sanz, P. D. (2003). Modelling heat transfer in high pressure food processing: A review. Innovative Food Science & Emerging Technologies, 4(2), 121-134.
Paidhungat, M., Setlow, B., Daniels, W. B., Hoover, D., Papafragkou, E., & Setlow, P. (2002). Mechanisms of induction of germination of Bacillus subtilis spores by high pressure. Applied and Environmental Microbiology, 68(6), 3172-3175.
Paidhungat, M., & Setlow, P. (2000). Role of Ger proteins in nutrient and nonnutrient triggering of spore germination in Bacillus subtilis. Journal of Bacteriology, 182(9), 2513-2519.
Paidhungat, M., & Setlow, P. (2001). Localization of a germinant receptor protein (GerBA) to the inner membrane of Bacillus subtilis spores. Journal of Bacteriology, 183(13), 3982-3990.
Painter, J. A., Hoekstra, R. M., Ayers, T., Tauxe, R. V., Braden, C. R., Angulo, F. J., & Griffin, P. M. (2013). Attribution of foodborne illnesses, hospitalizations, and deaths to food commodities by using outbreak data, United States, 1998-2008. Emerging Infectious Diseases, 19(3), 407.
Pardo, G., & Zufía, J. (2012). Life cycle assessment of food-preservation technologies. Journal of Cleaner Production, 28, 198-207.
Paredes-Sabja, D., Setlow, B., Setlow, P., & Sarker, M. R. (2008). Characterization of Clostridium perfringens spores that lack spoVA proteins and dipicolinic acid. Journal of Bacteriology, 190(13), 4648-4659.
Paredes-Sabja, D., Setlow, P., & Sarker, M. R. (2009). SleC is essential for cortex peptidoglycan hydrolysis during germination of spores of the pathogenic bacterium Clostridium perfringens. Journal of Bacteriology, 191(8), 2711-2720.
Paredes-Sabja, D., Setlow, P., & Sarker, M. R. (2011). Germination of spores of Bacillales and Clostridiales species: Mechanisms and proteins involved. Trends in Microbiology, 19(2), 85-94.
Parish, M. E. (1998). High pressure inactivation of Saccharomyces cerevisiae, endogenous microflora and pectinmethylesterase in orange juice. Journal of Food Safety, 18(1), 57-65.
Partschefeld, C., Richter, S., Schwarzenbolz, U., & Henle, T. (2007). Modification of beta-lactoglobulin by microbial transglutaminase under high hydrostatic pressure: Localization of reactive glutamine residues. Biotechnology Journal, 2(4), 462-468.
Patrignani, F., & Lanciotti, R. (2016). Applications of high and ultra high pressure homogenization for food safety. Frontiers in Microbiology, 7, 1132.
Patterson, M. F., Linton, M., & Doona, C. J. (2007). Introduction to high pressure processing of foods. In Doona C. J. & Feeherry F. E. High pressure processing of foods (pp. , 1-14). Blackwell Publishing Ltd.
Patterson, M. F., Mackle, A., & Linton, M. (2011). Effect of high pressure, in combination with antilisterial agents, on the growth of Listeria monocytogenes during extended storage of cooked chicken. Food Microbiology, 28(8), 1505-1508.
Pavoni, E., Arcangeli, G., Dalzini, E., Bertasi, B., Terregino, C., Montesi, F., A. Manfrin, E. Bertoli, A. Brutti, Varisco, G., M. N. Losio (2015). Synergistic effect of high hydrostatic pressure (HHP) and marination treatment on the inactivation of hepatitis A virus in mussels (Mytilus galloprovincialis). Food and Environmental Virology, 7(1), 76-85.
Payens, T., & Heremans, K. (1969). Effect of pressure on the temperature-dependent association of β-casein. Biopolymers, 8(3), 335-345.
Pei-Ling, L., Xiao-Song, H., & Qun, S. (2010). Effect of high hydrostatic pressure on starches: A review. Starch-Stärke, 62(12), 615-628.
Peñas, E., Gomez, R., Frias, J., Baeza, M. L., & Vidal-Valverde, C. (2011). High hydrostatic pressure effects on immunoreactivity and nutritional quality of soybean products. Food Chemistry, 125(2), 423-429.
Peñas, E., Préstamo, G., Baeza, M. L., Martínez-Molero, M. I., & Gomez, R. (2006). Effects of combined high pressure and enzymatic treatments on the hydrolysis and immunoreactivity of dairy whey proteins. International Dairy Journal, 16(8), 831-839.
Peñas, E., Restani, P., Ballabio, C., Préstamo, G., Fiocchi, A., & Gomez, R. (2006). Evaluation of the residual antigenicity of dairy whey hydrolysates obtained by combination of enzymatic hydrolysis and high-pressure treatment. Journal of Food Protection, 69(7), 1707-1712.
Peñas, E., Restani, P., Ballabio, C., Préstamo, G., Fiocchi, A., & Gómez, R. (2006). Assessment of the residual immunoreactivity of soybean whey hydrolysates obtained by combined enzymatic proteolysis and high pressure. European Food Research and Technology, 222(3-4), 286-290.
Pérez-Baltar, A., Serrano, A., Montiel, R., & Medina, M. (2020). Listeria monocytogenes inactivation in deboned dry-cured hams by high pressure processing. Meat Science, 160, 107960.
Pérez-Mateos, M., Lourenço, H., Montero, P., & Borderias, A. (1997). Rheological and biochemical characteristics of high-pressure- and heat-induced gels from blue whiting (Micromesistius poutassou) muscle proteins. Journal of Agricultural and Food Chemistry, 45(1), 44-49.
Phuvasate, S., & Su, Y. C. (2015). Efficacy of low-temperature high hydrostatic pressure processing in inactivating Vibrio parahaemolyticus in culture suspension and oyster homogenate. International Journal of Food Microbiology, 196, 11-15.
Pilavtepe-Çelik, M., Buzrul, S., Alpas, H., & Bozoğlu, F. (2009). Development of a new mathematical model for inactivation of Escherichia coli O157: H7 and Staphylococcus aureus by high hydrostatic pressure in carrot juice and peptone water. Journal of Food Engineering, 90(3), 388-394.
Pokhrel, P. R., Toniazzo, T., Boulet, C., Oner, M. E., Sablani, S. S., Tang, J., & Barbosa-Cánovas, G. V. (2019). Inactivation of Listeria innocua and Escherichia coli in carrot juice by combining high pressure processing, nisin, and mild thermal treatments. Innovative Food Science & Emerging Technologies, 54, 93-102.
Porto-Fett, A. C. S., Call, J. E., Shoyer, B. E., Hill, D. E., Pshebniski, C., Cocoma, G. J., & Luchansky, J. B. (2010). Evaluation of fermentation, drying, and/or high pressure processing on viability of Listeria monocytogenes, Escherichia coli O157:H7, Salmonella spp., and Trichinella spiralis in raw pork and Genoa salami. International Journal of Food Microbiology, 140(1), 61-75.
Porto-fett, A. C. S., Jackson-davis, A., Kassama, L. S., Daniel, M., Oliver, M., Jung, Y., & Luchansky, J. B. (2020). Inactivation of shiga toxin-producing Escherichia coli in refrigerated and frozen meatballs using high pressure processing. Microorganisms, 8(3), 1-9.
Pulido, R. P., del Árbol, J. T., Burgos, M. J. G., & Gálvez, A. (2012). Bactericidal effects of high hydrostatic pressure treatment singly or in combination with natural antimicrobials on Staphylococcus aureus in rice pudding. Food Control, 28(1), 19-24.
Pyatkovskyy, T. I., Shynkaryk, M. V., Mohamed, H. M., Yousef, A. E., & Sastry, S. K. (2018). Effects of combined high pressure (HPP), pulsed electric field (PEF) and sonication treatments on inactivation of Listeria innocua. Journal of Food Engineering, 233, 49-56.
Quiroz-González, B., Rodríguez-Martínez, V., García-Mateos, M. D. R., Torres, J. A., & Welti-Chanes, J. (2018). High hydrostatic pressure inactivation and recovery study of Listeria innocua and Saccharomyces cerevisiae in pitaya (Stenocereus pruinosus) juice. Innovative Food Science & Emerging Technologies, 50, 169-173.
Rajan, S., Pandrangi, S., Balasubramaniam, V. M., & Yousef, A. E. (2006). Inactivation of Bacillus stearothermophilus spores in egg patties by pressure-assisted thermal processing. Food Science and Technology International, 39(8), 844-851.
Rao, P. S., Chakraborty, S., Kaushik, N., Kaur, B. P., & Swami Hulle, N. R. (2014). High hydrostatic pressure processing of food materials. In J. K. Sahu (Ed.), Introduction to advanced food processing technologies (pp. 151-185). CRC Press.
Raouche, S., Mauricio-Iglesias, M., Peyron, S., Guillard, V., & Gontard, N. (2011). Combined effect of high pressure treatment and anti-microbial bio-sourced materials on microorganisms' growth in model food during storage. Innovative Food Science & Emerging Technologies, 12(4), 426-434.
Rastogi, N. K. (2013). Recent developments in high pressure processing of foods. New York: Springer US.
Rastogi, N. K., Raghavarao, K. S. M. S., Balasubramaniam, V. M., Niranjan, K., & Knorr, D. (2007). Opportunities and challenges in high pressure processing of foods. Critical Reviews in Food Science and Nutrition, 47(1), 69-112.
Ratphitagsanti, W., Lamo-Castellvi, D., Balasubramaniam, V., & Yousef, A. E. (2010). Efficacy of pressure-assisted thermal processing, in combination with organic acids, against Bacillus amyloliquefaciens spores suspended in deionized water and carrot puree. Journal of Food Science, 75(1), M46-M52.
Realini, C. E., Guardia, M. D., Garriga, M., Perez-Juan, M., & Arnau, J. (2011). High pressure and freezing temperature effect on quality and microbial inactivation of cured pork carpaccio. Meat Science, 88(3), 542-547.
Reddy, N. R., Solomon, H. M., Fingerhut, G. A., Rhodehamel, E. J., Balasubramaniam, V. M., & Palaniappan, S. (1999). Inactivation of Clostridium botulinum type E spores by high pressure processing. Journal of Food Safety, 19(4), 277-288.
Reddy, N. R., Tetzloff, R. C., Solomon, H. M., & Larkin, J. W. (2006). Inactivation of Clostridium botulinum nonproteolytic type B spores by high pressure processing at moderate to elevated high temperatures. Innovative Food Science & Emerging Technologies, 7(3), 169-175.
Reiman, D. A., Schmidt, T. M., Gajadhar, A., Sogin, M., Cross, J., Yoder, K., Sethabutr O, Echeverria, P. (1996). Molecular phylogenetic analysis of Cyclospora, the human intestinal pathogen, suggests that it is closely related to Eimeria species. Journal of Infectious Diseases, 173(2), 440-445.
Reineke, K., Doehner, I., Schlumbach, K., Baier, D., Mathys, A., & Knorr, D. (2012). The different pathways of spore germination and inactivation in dependence of pressure and temperature. Innovative Food Science & Emerging Technologies, 13, 31-41.
Reineke, K., Mathys, A., Heinz, V., & Knorr, D. (2013). Mechanisms of endospore inactivation under high pressure. Trends in Microbiology, 21(6), 296-304.
Reineke, K., Mathys, A., & Knorr, D. (2011). The impact of high pressure and temperature on bacterial spores: Inactivation mechanisms of Bacillus subtilis above 500 MPa. Journal of Food Science, 76(3), 189-197.
Reineke, K., Schlumbach, K., Baier, D., Mathys, A., & Knorr, D. (2013). The release of dipicolinic acid-The rate-limiting step of Bacillus endospore inactivation during the high pressure thermal sterilization process. International Journal of Food Microbiology, 162(1), 55-63.
Reineke, K., Sevenich, R., Hertwig, C., Janssen, T., Frohling, A., Knorr, D., L. H Wieler, Schluter, O. (2015). Comparative study on the high pressure inactivation behavior of the Shiga toxin-producing Escherichia coli O104:H4 and O157:H7 outbreak strains and a non-pathogenic surrogate. Food Microbiology, 46, 184-194.
Reitermayer, D., Kafka, T. A., Lenz, C. A., & Vogel, R. F. (2020). Interaction of fat and aqueous phase parameters during high-hydrostatic pressure inactivation of Lactobacillus plantarum in oil-in-water emulsions. European Food Research and Technology, 246(6), 1269-1281.
Rendueles, E., Omer, M., Alvseike, O., Alonso-Calleja, C., Capita, R., & Prieto, M. (2011). Microbiological food safety assessment of high hydrostatic pressure processing: A review. LWT-Food Science and Technology, 44(5), 1251-1260.
Richards, G. P. (2012). Critical review of norovirus surrogates in food safety research: Rationale for considering volunteer studies. Food and Environmental Virology, 4(1), 6-13.
Ritz, M., Jugiau, F., Federighi, M., Chapleau, N., & de Lamballerie, M. (2008). Effects of high pressure, subzero temperature, and pH on survival of Listeria monocytogenes in buffer and smoked salmon. Journal of Food Protection, 71(8), 1612-1618.
Robertson, L. J. (2018). Parasites in food: From a neglected position to an emerging issue. Advances in Food and Nutrition Research, 86, 71-113.
Rocha-Pimienta, J., Martillanes, S., Ramírez, R., Garcia-Parra, J., & Delgado-Adamez, J. (2020). Bacillus cereus spores and Staphylococcus aureus sub. aureus vegetative cells inactivation in human milk by high-pressure processing. Food Control, 113, 107212.
Rode, L. J., & Foster, J. W. (1966). Quantitative aspects of exchangeable calcium in spores of Bacillus megaterium. Journal of Bacteriology, 91(4), 1589-1593.
Rodriguez-Gonzalez, O., Buckow, R., Koutchma, T., & Balasubramaniam, V. M. (2015). Energy requirements for alternative food processing technologies-Principles, assumptions, and evaluation of efficiency. Comprehensive Reviews in Food Science and Food Safety, 14(5), 536-554.
Röntgen, W. C. (1892). Kurze Mittheilung von Versuchen über den Einfluss des Druckes auf einige physikalische Erscheinungen. Annalen der Physik, 281, 98-107.
Rosypal, A. C., Bowman, D. D., Holliman, D., Flick, G. J., & Lindsay, D. S. (2007). Effects of high hydrostatic pressure on embryonation of Ascaris suum eggs. Veterinary Parasitology, 145(1-2), 86-89.
Rosypal, A. C., Zajac, A. M., Flick, G. J., Bowman, D. D., & Lindsay, D. S. (2011). High pressure processing treatment prevents embryonation of eggs of Trichuris vulpis and Ascaris suum and induces delay in development of eggs. Veterinary Parasitology, 181(2-4), 350-353.
Rousseau, A., La Carbona, S., Dumètre, A., Robertson, L. J., Gargala, G., Escotte-Binet, S., L. Favennec, I. Villena, C. Gérard, Aubert, D. (2018). Assessing viability and infectivity of foodborne and waterborne stages (cysts/oocysts) of Giardia duodenalis, Cryptosporidium spp., and Toxoplasma gondii: A review of methods. Parasite, 25, 14.
Ruiz, A. G., Xi, B., Minor, M., Sala, G., Van Boekel, M., Fogliano, V., & Stieger, M. (2016). High-pressure-high-temperature processing reduces Maillard reaction and viscosity in whey protein-sugar solutions. Journal of Agricultural and Food Chemistry, 64(38), 7208-7215.
Rux, G., Gelewsky, R., Schlüter, O., & Herppich, W. B. (2020). High hydrostatic pressure treatment effects on selected tissue properties of fresh horticultural products. Innovative Food Science & Emerging Technologies, 61, 102326.
Rychlik, M., Humpf, H. U., Marko, D., Danicke, S., Mally, A., Berthiller, F., H. Klaffke, & Lorenz, N. (2014). Proposal of a comprehensive definition of modified and other forms of mycotoxins including “masked” mycotoxins. Mycotoxin Research, 30(4), 197-205.
San Martin, M. F., Barbosa-Canovas, G. V., & Swanson, B. G. (2002). Food processing by high hydrostatic pressure. Critical Reviews in Food Science and Nutrition, 42(6), 627-645.
Sánchez-Moreno, C., Plaza, L., Elez-Martínez, P., De Ancos, B., Martín-Belloso, O., & Cano, M. P. (2005). Impact of high pressure and pulsed electric fields on bioactive compounds and antioxidant activity of orange juice in comparison with traditional thermal processing. Journal of Agricultural and Food Chemistry, 53(11), 4403-4409.
Sánchez, G., Aznar, R., Martínez, A., & Rodrigo, D. (2011). Inactivation of human and murine norovirus by high-pressure processing. Foodborne Pathogens and Disease, 8(2), 249-253.
Sancho, F., Lambert, Y., Demazeau, G., Largeteau, A., Bouvier, J.-M., & Narbonne, J.-F. (1999). Effect of ultra-high hydrostatic pressure on hydrosoluble vitamins. Journal of Food Engineering, 39(3), 247-253.
Sander, F. (1943). The effects of high pressure on the inversion of sucrose and the mutarotation of glucose. Journal of Biological Chemistry, 148, 311-319.
Sansone, L., Aldi, A., Musto, P., Di Maio, E., Amendola, E., & Mensitieri, G. (2012). Assessing the suitability of polylactic acid flexible films for high pressure pasteurization and sterilization of packaged foodstuff. Journal of Food Engineering, 111(1), 34-45.
Santillana Farakos, S. M., & Zwietering, M. H. (2011). Data analysis of the inactivation of foodborne microorganisms under high hydrostatic pressure to establish global kinetic parameters and influencing factors. Journal of Food Protection, 74(12), 2097-2106.
Sanz-Puig, M., Moreno, P., Pina-Pérez, M. C., Rodrigo, D., & Martínez, A. (2017). Combined effect of high hydrostatic pressure (HHP) and antimicrobial from agro-industrial by-products against S. Typhimurium. LWT-Food Science and Technology, 77, 126-133.
Saucedo-Reyes, D., Marco-Celdrán, A., Pina-Pérez, M. C., Rodrigo, D., & Martínez-López, A. (2009). Modeling survival of high hydrostatic pressure treated stationary- and exponential-phase Listeria innocua cells. Innovative Food Science & Emerging Technologies, 10(2), 135-141.
Schieberle, P., Hofmann, T., & Deters, F. (2005). Influence of high hydrostatic pressure on aroma compound formation in thermally processed proline-glucose mixtures. Washington, DC: ACS Publications.
Schnabel, J., Lenz, C. A., & Vogel, R. F. (2015). High pressure inactivation of Clostridium botulinum type E endospores in model emulsion systems. High Pressure Research, 35(1), 78-88.
Schuh, S., Schwarzenbolz, U., & Henle, T. (2010). Cross-linking of hen egg white lysozyme by microbial transglutaminase under high hydrostatic pressure: Localization of reactive amino acid side chains. Journal of Agricultural and Food Chemistry, 58(24), 12749-12752.
Schwarzenbolz, U., Förster, A., & Henle, T. (2017). Influence of high hydrostatic pressure on the reaction between glyoxal and lysine residues. European Food Research and Technology, 243, 1335-1361.
Schwarzenbolz, U., & Henle, T. (2010). Non-enzymatic modifications of proteins under high-pressure treatment. High Pressure Research, 30, 458-465.
Schwarzenbolz, U., Klostermeyer, H., & Henle, T. (2000). Maillard-type reactions under pressure: Formation of pentosidine. European Food Research and Technology, 211, 208-210.
Schwarzenbolz, U., Klostermeyer, H., & Henle, T. (2002). Maillard reaction under high hydrostatic pressure: Studies on the formation of protein-bound amino acid derivatives. International Congress Series, 1245, 223-227.
Scolari, G., Zacconi, C., Busconi, M., & Lambri, M. (2015). Effect of the combined treatments of high hydrostatic pressure and temperature on Zygosaccharomyces bailii and Listeria monocytogenes in smoothies. Food Control, 47, 166-174.
Scurrah, K., Robertson, R., Craven, H., Pearce, L., & Szabo, E. (2006). Inactivation of Bacillus spores in reconstituted skim milk by combined high pressure and heat treatment. Journal of Applied Microbiology, 101(1), 172-180.
Sedighi, M., & Jabbari, A. H. (2013). A new analytical approach for wire-wound frames used to carry the loads of pressure vessel closures. Journal of Pressure Vessel Technology, 135(6), 061206-061207.
Segovia Bravo, K., Ramírez, R., Durst, R., Escobedo-Avellaneda, Z., Welti-Chanes, J., Sanz, P., & Torres, J. (2012). Formation risk of toxic and other unwanted compounds in pressure-assisted thermally processed foods. Journal of Food Science, 77, 1-10.
Serment-Moreno, V., Barbosa-Cánovas, G., Torres, J. A., & Welti-Chanes, J. (2014). High-pressure processing: Kinetic models for microbial and enzyme inactivation. Food Engineering Reviews, 6(3), 56-88.
Serment-Moreno, V., Fuentes, C., Barbosa-Cánovas, G., Torres, J. A., & Welti-Chanes, J. (2015). Evaluation of high pressure processing kinetic models for microbial inactivation using standard statistical tools and information theory criteria, and the development of generic time-pressure functions for process design. Food and Bioprocess Technology, 8(6), 1244-1257.
Serment-Moreno, V., Jacobo-Velázquez, D. A., Torres, J. A., & Welti-Chanes, J. (2017). Microstructural and physiological changes in plant cell induced by pressure: Their role on the availability and pressure-temperature stability of phytochemicals. Food Engineering Reviews, 9(4), 314-334.
Setlow, P. (2003). Spore germination. Current Opinion in Microbiology, 6(6), 550-556.
Sevenich, R., Bark, F., Crews, C., Anderson, W., Pye, C., Riddellova, K., Hradecky J, Moravcova E, Reineke K, & Knorr, D. (2013). Effect of high pressure thermal sterilization on the formation of food processing contaminants. Innovative Food Science & Emerging Technologies, 20, 42-50.
Sevenich, R., Bark, F., Kleinstueck, E., Crews, C., Pye, C., Hradecky, J., K. Reineke, M. Lavilla, I. Martinez-de-Maranon, Briand, J., & Knorra, D. (2015). The impact of high pressure thermal sterilization on the microbiological stability and formation of food processing contaminants in selected fish systems and baby food puree at pilot scale. Food Control, 50, 539-547.
Sevenich, R., Kleinstueck, E., Crews, C., Anderson, W., Pye, C., Riddellova, K., J. Hradecky, E. Moravcova, K. Reineke, & Knorr, D. (2014). High-pressure-thermal sterilization: Food safety and food quality of baby food puree. Journal of Food Science, 79(2), M230-M237.
Sevenich, R., Rauh, C., & Knorr, D. (2016). A scientific and interdisciplinary approach for high pressure processing as a future toolbox for safe and high quality products: A review. Innovative Food Science & Emerging Technologies, 38, 65-75.
Sevenich, R., Reineke, K., Hecht, P., Frohling, A., Rauh, C., Schluter, O., & Knorr, D. (2015). Impact of different water activities (aw) adjusted by solutes on high pressure high temperature inactivation of Bacillus amyloliquefaciens spores. Frontiers in Microbiology, 6, 689.
Sheen, S., Cassidy, J., Scullen, B., & Sommers, C. (2015). Inactivation of a diverse set of shiga toxin-producing Escherichia coli in ground beef by high pressure processing. Food Microbiology, 52, 84-87.
Sido, R. F., Huang, R., Liu, C., & Chen, H. (2017). High hydrostatic pressure inactivation of murine norovirus and human noroviruses on green onions and in salsa. International Journal of Food Microbiology, 242, 1-6.
Simonin, H., Duranton, F., & De Lamballerie, M. (2012). New insights into the high-pressure processing of meat and meat products. Comprehensive Reviews in Food Science and Food Safety, 11(3), 285-306.
Singh, P. (2017). Effective packaging solutions for HPP. HHP Summit 2017. Retrieved from https://universalpure.com/wp-content/uploads/2017/08/2017-HPP-Summit-Presentation-PremSingh-Teinnovations.pdf.
Slifko, T. R., Raghubeer, E., & Rose, J. B. (2000). Effect of high hydrostatic pressure on Cryptosporidium parvum infectivity. Journal of Food Protection, 63(9), 1262-1267.
Słomińska, L., Zielonka, R., Jarosławski, L., Krupska, A., Szlaferek, A., Kowalski, W., J. Tomaszewska-Gras, & Nowicki, M. (2015). High pressure impact on changes in potato starch granules. Polish Journal of Chemical Technology, 17(4), 65-73.
Somkuti, J., & Smeller, L. (2013). High pressure effects on allergen food proteins. Biophysical Chemistry, 183, 19-29.
Sommers, C., Sheen, S., Scullen, O. J., & Mackay, W. (2017). Inactivation of Staphylococcus saprophyticus in chicken meat and purge using thermal processing, high pressure processing, gamma radiation, and ultraviolet light (254 nm). Food Control, 75, 78-82.
Song, Y., & Koontz, J. (2016). Ensuring migration safety of food contact polymers treated with high pressure processing. 6th International Symposium on Food Packaging -Scientific Developments Supporting Safety and Innovation. Retrieved from http://ilsi.eu/wp-content/uploads/sites/3/2016/10/AbstractBio_Song.pdf.
Stewart, C. M., Dunne, C. P., & Keener, L. (2016). Pressure-assisted thermal sterilization validation. In V. M. Balasubramaniam, G. V. Barbosa-Cánovas, & H. L. M. Lelieveld (Eds.), High pressure processing of food: Principles, technology and applications (pp. 687-716). New York: Springer New York.
Suzuki, A., Hara, T., Koyama, H., Nogami, N., Han, G., Odani, S., Matsuno, M., Joh, T., & Nishiumi, T. (2004). Effect of high pressure treatment on the allergenicity of bovine serum albumin evaluated by histamine release assay using sera from allergic patients and human basophilic KU812F cells. Proceedings of the 50th International Congress of Meat Science & Technology, 1163-1166.
Szabo, K., Trojnar, E., Anheyer-Behmenburg, H., Binder, A., Schotte, U., Ellerbroek, L., G. Klein, & Johne, R. (2015). Detection of hepatitis E virus RNA in raw sausages and liver sausages from retail in Germany using an optimized method. International Journal of Food Microbiology, 215, 149-156.
Szczepańska, J., Barba, F. J., Skąpska, S., & Marszałek, K. (2020). High pressure processing of carrot juice: Effect of static and multi-pulsed pressure on the polyphenolic profile, oxidoreductases activity and colour. Food Chemistry, 307, 125549.
Szwengiel, A., Lewandowicz, G., Gorecki, A. R., & Blaszczak, W. (2018). The effect of high hydrostatic pressure treatment on the molecular structure of starches with different amylose content. Food Chemistry, 240, 51-58.
Tamaoka, T., Itoh, N., & Hayashi, R. (1991). High pressure effect on Maillard reaction. Agricultural and Biological Chemistry, 55(8), 2071-2074.
Tananuwong, K., Chitsakun, T., & Tattiyakul, J. (2012). Effects of high-pressure processing on inactivation of Salmonella Typhimurium, eating quality, and microstructure of raw chicken breast fillets. Journal of Food Science, 77(11), E321-E327.
Tareke, E., Rydberg, P., Karlsson, P., Eriksson, S., & Tornqvist, M. (2002). Analysis of acrylamide, a carcinogen formed in heated foodstuffs. Journal of Agricultural and Food Chemistry, 50(17), 4998-5006.
Tauscher, B. (1995). Pasteurization of food by hydrostatic high pressure: Chemical aspects. Zeitschrift für Lebensmittel-Untersuchung und -Forschung, 200(1), 3-13.
Tay, A., Shellhammer, T. H., Yousef, A. E., & Chism, G. W. (2003). Pressure death and tailing behavior of Listeria monocytogenes strains having different barotolerances. Journal of Food Protection, 66(11), 2057-2061.
Terefe, N. S., Buckow, R., & Versteeg, C. (2014). Quality-related enzymes in fruit and vegetable products: Effects of novel food processing technologies, part 1: high-pressure processing. Critical Reviews in Food Science and Nutrition, 54(1), 24-63.
Tian, Y., Huang, J., Xie, T., Huang, L., Zhuang, W., Zheng, Y., & Zheng, B. (2016). Oenological characteristics, amino acids and volatile profiles of Hongqu rice wines during pottery storage: Effects of high hydrostatic pressure processing. Food Chemistry, 203, 456-464.
Ting, E. (2010). High-pressure processing equipment fundamentals. In H. Q. Zhang, G. V. Barbosa-Cánovas, V. M. Balasubramaniam, C. P. Dunne, D. F. Farkas, & J. T. C. Yuan (Eds.), Nonthermal processing technologies for food (pp. 20-27). Wiley-Blackwell.
Ting, E. Y., & Marshall, R. G. (2002). Production issues related to UHP food. In J. Welti-Chanes, G. Barbosa-Canovas, & J. M. Aguilera (Eds.), Engineering and food for the 21st century (pp. 727-738). Boca Raton, FL: CRC Press LLC.
Tokuşoğlu, Ö., Alpas, H., & Bozoğlu, F. (2010). High hydrostatic pressure effects on mold flora, citrinin mycotoxin, hydroxytyrosol, oleuropein phenolics and antioxidant activity of black table olives. Innovative Food Science & Emerging Technologies, 11(2), 250-258.
Tola, Y. B., & Ramaswamy, H. S. (2014). Combined effects of high pressure, moderate heat and pH on the inactivation kinetics of Bacillus licheniformis spores in carrot juice. Food Research International, 62, 50-58.
Tonello-Samson, C. (2018a). Commercial applications of HPP & irradiation (ionizing radiation). Oral Presentation at International Nonthermal Processing Workshop and Short Course. IFT-EFFoST, September 25-27, Sorrento, Italy.
Tonello-Samson, C. (2018b). HPP successful applications and trends: HPP market growth & Hiperbaric Bulk technology. Oral Presentation at International Nonthermal Processing Workshop and Short Course. IFT-EFFoST, September 25-27, Sorrento, Italy.
Tonello-Samson, C., Queirós, R. P., & González-Angulo, M. (2020). Advances in high-pressure processing in-pack and in-bulk commercial equipment. In F. Barba C. Tonello-Samson E. Puértolas & M. Lavilla Present and future of high pressure processing (pp. 297-316). Elsevier.
Torres, E., González-M, G., Klotz, B., & Rodrigo, D. (2016). Effects of high hydrostatic pressure and temperature increase on Escherichia coli spp. and pectin methyl esterase inactivation in orange juice. Revista de agroquimica y tecnologia de alimentos, 22(2), 173-180.
Torres, J. A., & Velazquez, G. (2005). Commercial opportunities and research challenges in the high pressure processing of foods. Journal of Food Engineering, 67(1-2), 95-112.
Torres, J. A., & Velázquez, G. (2008). Hydrostatic pressure processing of foods. In S. Jun & J. Irudayaraj (Eds.), Food processing operations modeling: Design and analysis (pp. 173-212). Boca Ratón, FL: CRC Press Inc.
Tribst, A. A., Franchi, M. A., & Cristianini, M. (2008). Ultra-high pressure homogenization treatment combined with lysozyme for controlling Lactobacillus brevis contamination in model system. Innovative Food Science & Emerging Technologies, 9(3), 265-271.
Tribst, A. A., Franchi, M. A., Cristianini, M., & De Massaguer, P. R. (2009). Inactivation of Aspergillus niger in mango nectar by high-pressure homogenization combined with heat shock. Journal of Food Science, 74(9), M509-M514.
Valdramidis, V., Patterson, M., & Linton, M. (2015). Modelling the recovery of Listeria monocytogenes in high pressure processed simulated cured meat. Food Control, 47, 353-358.
Van der Plancken, I., Van Loey, A., & Hendrickx, M. E. (2005). Combined effect of high pressure and temperature on selected properties of egg white proteins. Innovative Food Science & Emerging Technologies, 6(1), 11-20.
Van Der Ven, C., Matser, A. M., & Van den Berg, R. W. (2005). Inactivation of soybean trypsin inhibitors and lipoxygenase by high-pressure processing. Journal of Agricultural and Food Chemistry, 53(4), 1087-1092.
Van Eldik, R., Asano, T., & Le Noble, W. (1989). Activation and reaction volumes in solution. 2. Chemical Reviews, 89(3), 549-688.
Van Loey, A., Ooms, V., Weemaes, C., Van den Broeck, I., Ludikhuyze, L., Indrawati, S., Denys, S., & Hendrickx, M. (1998). Thermal and pressure−temperature degradation of chlorophyll in broccoli (Brassica oleracea L. italica) juice: A kinetic study. Journal of Agricultural and Food Chemistry, 46(12), 5289-5294.
Van Opstal, I., Vanmuysen, S. C., Wuytack, E. Y., Masschalck, B., & Michiels, C. W. (2005). Inactivation of Escherichia coli by high hydrostatic pressure at different temperatures in buffer and carrot juice. International Journal of Food Microbiology, 98(2), 179-191.
van Wyk, S., Farid, M. M., & Silva, F. V. M. (2018). SO2, high pressure processing and pulsed electric field treatments of red wine: Effect on sensory, Brettanomyces inactivation and other quality parameters during one year storage. Innovative Food Science & Emerging Technologies, 48, 204-211.
Vanga, S. K., Singh, A., & Raghavan, V. (2015). Review of conventional and novel food processing methods on food allergens. Critical Reviews in Food Science and Nutrition, 57(10), 2077-2094.
Vanlint, D., Rutten, N., Govers, S. K., Michiels, C. W., & Aertsen, A. (2013). Exposure to high hydrostatic pressure rapidly selects for increased RpoS activity and general stress-resistance in Escherichia coli O157: H7. International Journal of Food Microbiology, 163(1), 28-33.
Venugopal, V. (2006). Retort pouch packaging. In: Vazhiyil Venugopal Seafood processing: Adding value through quick freezing, retortable packaging, cook-chilling and other methods (pp.. 197-215). New York: CRC Press.
Vercammen, A., Vanoirbeek, K. G., Lemmens, L., Lurquin, I., Hendrickx, M. E., & Michiels, C. W. (2012). High pressure pasteurization of apple pieces in syrup: Microbiological shelf-life and quality evolution during refrigerated storage. Innovative Food Science & Emerging Technologies, 16, 259-266.
Verlinde, P. H., Oey, I., Deborggraeve, W. M., Hendrickx, M. E., & Van Loey, A. M. (2009). Mechanism and related kinetics of 5-methyltetrahydrofolic acid degradation during combined high hydrostatic pressure-thermal treatments. Journal of Agricultural and Food Chemistry, 57(15), 6803-6814.
Vervoort, L., Van der Plancken, I., Grauwet, T., Verlinde, P., Matser, A., Hendrickx, M., & Van Loey, A. (2012). Thermal versus high pressure processing of carrots: A comparative pilot-scale study on equivalent basis. Innovative Food Science & Emerging Technologies, 15, 1-13.
Vidacek, S., de las Heras, C., Solas, M. T., Rodriguez Mahillo, A. I., & Tejada, M. (2009). Effect of high hydrostatic pressure on mortality and allergenicity of Anisakis simplex L3 and on muscle properties of infested hake. Journal of the Science of Food and Agriculture, 89(13), 2228-2235.
Villamonte, G., Pottier, L., & de Lamballerie, M. (2017). Influence of high-pressure processing on the oxidative processes in pork batters: Efficacy of rosemary extract and sodium ascorbate. European Food Research and Technology, 243(9), 1567-1576.
Wang, C.-Y., Huang, H.-W., Hsu, C.-P., & Yang, B. B. (2016). Recent advances in food processing using high hydrostatic pressure technology. Critical Reviews in Food Science and Nutrition, 56(4), 527-540.
Wang, C., Riedl, K. M., Somerville, J., Balasubramaniam, V., & Schwartz, S. J. (2011). Influence of high-pressure processing on the profile of polyglutamyl 5-methyltetrahydrofolate in selected vegetables. Journal of Agricultural and Food Chemistry, 59(16), 8709-8717.
Wang, G., Paredes-Sabja, D., Sarker, M. R., Green, C., Setlow, P., & Li, Y. Q. (2012). Effects of wet heat treatment on the germination of individual spores of Clostridium perfringens. Journal of Applied Microbiology, 113(4), 824-836.
Wang, G., Zhang, P., Paredes-Sabja, D., Green, C., Setlow, P., Sarker, M. R., & Li, Y. Q. (2011). Analysis of the germination of individual Clostridium perfringens spores and its heterogeneity. Journal of Applied Microbiology, 111(5), 1212-1223.
Wang, J., Barba, F. J., Sorensen, J. C., Frandsen, H. B., Sorensen, S., Olsen, K., & Orlien, V. (2018). High pressure effects on myrosinase activity and glucosinolate preservation in seedlings of Brussels sprouts. Food Chemistry, 245, 1212-1217.
Watkins, D. (2012). Regulatory and legislative issues for non-thermal technologies: An EU perspective. In P.J. Cullen B.K. Tiwari & V.P. Valdramidis Novel thermal and non-thermal technologies for fluid foods (pp. , 473-494). Elsevier.
Wen, J., Anantheswaran, R. C., & Knabel, S. J. (2009). Changes in barotolerance, thermotolerance, and cellular morphology throughout the life cycle of Listeria monocytogenes. Applied and Environmental Microbiology, 75(6), 1581-1588.
Westphal, A., Schwarzenbolz, U., & Boehm, V. (2018). Effects of high pressure processing on bioactive compounds in spinach and rosehip puree. European Food Research and Technology, 244(3), 395-407.
Wilson, M. J., & Baker, R. (2003). High temperature/ultra-high pressure sterilization of foods. U.S. Patent 6,086,936.
Winter, R., & Jeworrek, C. (2009). Effect of pressure on membranes. Soft Matter, 5(17), 3157-3173.
Wouters, P. C., Glaasker, E., & Smelt, J. P. (1998). Effects of high pressure on inactivation kinetics and events related to proton efflux in Lactobacillus plantarum. Applied and Environmental Microbiology, 64(2), 509-514.
Wuytack, E. Y., Boven, S., & Michiels, C. W. (1998). Comparative study of pressure-induced germination of Bacillus subtilis spores at low and high pressures. Applied and Environmental Microbiology, 64(9), 3220-3224.
Yamamoto, S., Mikami, N., Matsuno, M., Hara, T., Odani, S., Suzuki, A., & Nishiumi, T. (2010). Effects of a high-pressure treatment on bovine gamma globulin and its reduction in allergenicity. Bioscience, Biotechnology and Biochemistry, 74(3), 525-530.
Yamamoto, S., Takanohashi, K., Hara, T., Odani, S., Suzuki, A., & Nishiumi, T. (2010). Effects of a high-pressure treatment on the wheat alpha-amylase inhibitor and its relationship to elimination of allergenicity. Journal of Physics: Conference Series, 215(1), 012170.
Yamamoto, K., & Buckow, R. (2016). Pressure gelatinization of starch. In V. Balasubramaniam G. Barbosa-Cánovas & H. Lelieveld High pressure processing of food (pp. 433-459). Springer.
Yang, B., Shi, Y., Xia, X., Xi, M., Wang, X., Ji, B., & Meng, J. (2012). Inactivation of foodborne pathogens in raw milk using high hydrostatic pressure. Food Control, 28(2), 273-278.
Yang, H., Yang, A., Gao, J., & Chen, H. (2014). Characterization of physicochemical properties and IgE-binding of soybean proteins derived from the HHP-treated seeds. Journal of Food Science, 79(11), 2157-2163.
Yang, J., & Powers, J. R. (2016). Effects of high pressure on food proteins. In: Balasubramaniam V., Barbosa-Cánovas G., Lelieveld H. (Eds) High pressure processing of food. Food engineering series. (pp. 353-389). New York: Springer.
Yaylayan, V. (2006). Precursors, formation and determination of furan in food. Journal of Consumer Protection and Food Safety, 1, 5-9.
Ye, M., Lingham, T., Huang, Y., Ozbay, G., Ji, L., Karwe, M., & Chen, H. (2015). Effects of high-hydrostatic pressure on inactivation of human norovirus and physical and sensory characteristics of oysters. Journal of Food Science, 80(6), 1330-1335.
Zhang, Y., Jiao, S., Lian, Z., Deng, Y., & Zhao, Y. (2015). Effect of single- and two-cycle high hydrostatic pressure treatments on water properties, physicochemical and microbial qualities of minimally processed squids (Todarodes pacificus). Journal of Food Science, 80(5), 1012-1020.
Zhang, Z., Yang, Y., Tang, X., Chen, Y., & You, Y. (2015). Chemical forces and water holding capacity study of heat-induced myofibrillar protein gel as affected by high pressure. Food Chemistry, 188, 111-118.
Zhao, Y., Jiang, Y., Ding, Y., Wang, D., & Deng, Y. (2019). High hydrostatic pressure-assisted extraction of high-molecular-weight melanoidins from black garlic: Composition, structure, and bioactive properties. Journal of Food Quality, 2019, 1-8.
Zhong, Y., Wang, Z., & Zhao, Y. (2015). Impact of radio frequency, microwaving, and high hydrostatic pressure at elevated temperature on the nutritional and antinutritional components in black soybeans. Journal of Food Science, 80(12), 2732-2739.
Zhou, H., Wang, C., Ye, J., Chen, H., Tao, R., & Cao, F. (2016). Effects of high hydrostatic pressure treatment on structural, allergenicity, and functional properties of proteins from ginkgo seeds. Innovative Food Science & Emerging Technologies, 34, 187-195.
Zhou, H., Wang, C., Ye, J., Tao, R., Chen, H., & Cao, F. (2016). Effects of enzymatic hydrolysis assisted by high hydrostatic pressure processing on the hydrolysis and allergenicity of proteins from ginkgo seeds. Food and Bioprocess Technology, 9(5), 839-848.
Zhou, S., Sheen, S., Zhao, G., Chuang, S., & Liu, L. (2020). Prediction of Salmonella inactivation in sliced tomato subject to high pressure processing and trans-cinnamaldehyde treatment using selective and non-selective growth media for survival evaluations. Food Control, 118, 107441.
Zhu, S., Wang, C., Ramaswamy, H. S., & Yu, Y. (2017). Phase transitions during high pressure treatment of frozen carrot juice and influence on Escherichia coli inactivation. LWT-Food Science and Technology, 79, 119.
Zimmermann, M., Schaffner, D. W., & Aragão, G. M. (2013). Modeling the inactivation kinetics of Bacillus coagulans spores in tomato pulp from the combined effect of high pressure and moderate temperature. LWT-Food Science and Technology, 53(1), 107-112.

Auteurs

Kemal Aganovic (K)

DIL German Institute of Food Technologies e.V., Quakenbrück, Germany.

Christian Hertel (C)

DIL German Institute of Food Technologies e.V., Quakenbrück, Germany.

Rudi F Vogel (RF)

Technical University of Munich (TUM), Munich, Germany.

Reimar Johne (R)

German Federal Institute for Risk Assessment (BfR), Berlin, Germany.

Oliver Schlüter (O)

Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany.
Alma Mater Studiorum, University of Bologna, Cesena, Italy.

Uwe Schwarzenbolz (U)

Technische Universität Dresden (TUD), Dresden, Germany.

Henry Jäger (H)

University of Natural Resources and Life Sciences (BOKU), Wien, Austria.

Thomas Holzhauser (T)

Division of Allergology, Paul-Ehrlich-Institut (PEI), Langen, Germany.

Johannes Bergmair (J)

Pack Experts, Vienna, Austria.

Angelika Roth (A)

Senate Commission on Food Safety (DFG), IfADo, Dortmund, Germany.

Robert Sevenich (R)

Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany.
Technical University of Berlin (TUB), Berlin, Germany.

Niels Bandick (N)

German Federal Institute for Risk Assessment (BfR), Berlin, Germany.

Sabine E Kulling (SE)

Max Rubner-Institut (MRI), Karlsruhe, Germany.

Dietrich Knorr (D)

Technical University of Berlin (TUB), Berlin, Germany.

Karl-Heinz Engel (KH)

Technical University of Munich (TUM), Munich, Germany.

Volker Heinz (V)

DIL German Institute of Food Technologies e.V., Quakenbrück, Germany.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH