Integrating genomics and metabolomics for scalable non-ribosomal peptide discovery.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
28 05 2021
Historique:
received: 23 09 2020
accepted: 04 05 2021
entrez: 29 5 2021
pubmed: 30 5 2021
medline: 9 6 2021
Statut: epublish

Résumé

Non-Ribosomal Peptides (NRPs) represent a biomedically important class of natural products that include a multitude of antibiotics and other clinically used drugs. NRPs are not directly encoded in the genome but are instead produced by metabolic pathways encoded by biosynthetic gene clusters (BGCs). Since the existing genome mining tools predict many putative NRPs synthesized by a given BGC, it remains unclear which of these putative NRPs are correct and how to identify post-assembly modifications of amino acids in these NRPs in a blind mode, without knowing which modifications exist in the sample. To address this challenge, here we report NRPminer, a modification-tolerant tool for NRP discovery from large (meta)genomic and mass spectrometry datasets. We show that NRPminer is able to identify many NRPs from different environments, including four previously unreported NRP families from soil-associated microbes and NRPs from human microbiota. Furthermore, in this work we demonstrate the anti-parasitic activities and the structure of two of these NRP families using direct bioactivity screening and nuclear magnetic resonance spectrometry, illustrating the power of NRPminer for discovering bioactive NRPs.

Identifiants

pubmed: 34050176
doi: 10.1038/s41467-021-23502-4
pii: 10.1038/s41467-021-23502-4
pmc: PMC8163882
doi:

Substances chimiques

Anti-Bacterial Agents 0
Biological Products 0
Peptides 0
Peptide Synthases EC 6.3.2.-

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

3225

Subventions

Organisme : NIGMS NIH HHS
ID : DP2 GM126893
Pays : United States
Organisme : NIGMS NIH HHS
ID : DP2 GM137413
Pays : United States
Organisme : NCI NIH HHS
ID : P30 CA034196
Pays : United States

Commentaires et corrections

Type : ErratumIn

Références

Science. 2019 Feb 15;363(6428):
pubmed: 30765538
Nucleic Acids Res. 2020 Jan 8;48(D1):D454-D458
pubmed: 31612915
Med Res Rev. 2016 Jan;36(1):4-31
pubmed: 24866700
PLoS Comput Biol. 2014 Sep 04;10(9):e1003822
pubmed: 25188327
Chem Rev. 1997 Nov 10;97(7):2651-2674
pubmed: 11851476
Nucleic Acids Res. 2019 Jul 2;47(W1):W81-W87
pubmed: 31032519
J Am Chem Soc. 2011 Aug 3;133(30):11434-7
pubmed: 21699219
Fungal Genet Biol. 2010 Sep;47(9):736-41
pubmed: 20554054
J Nat Prod. 2016 Mar 25;79(3):629-61
pubmed: 26852623
Nat Microbiol. 2018 Apr;3(4):415-422
pubmed: 29434326
Nat Prod Rep. 2012 Oct;29(10):1074-98
pubmed: 22802156
Proc Natl Acad Sci U S A. 2015 Oct 13;112(41):12580-5
pubmed: 26392543
Nat Chem. 2015 May;7(5):411-7
pubmed: 25901819
Chembiochem. 2013 Oct 11;14(15):1991-7
pubmed: 24038745
Bioinformatics. 2009 Jun 1;25(11):1422-3
pubmed: 19304878
J Antibiot (Tokyo). 1986 Jun;39(6):745-54
pubmed: 3089998
Proc Natl Acad Sci U S A. 2013 Jul 9;110(28):E2611-20
pubmed: 23798442
Plant Sci. 2014 Nov;228:135-49
pubmed: 25438794
Nucleic Acids Res. 2007 Jan;35(Database issue):D61-5
pubmed: 17130148
Nat Commun. 2014 Oct 31;5:5277
pubmed: 25358478
Nat Commun. 2018 Oct 19;9(1):4366
pubmed: 30341296
Cell Syst. 2020 Jan 22;10(1):99-108.e5
pubmed: 31864964
Proc Natl Acad Sci U S A. 2014 Jun 24;111(25):9259-64
pubmed: 24927540
Nat Chem. 2017 Apr;9(4):379-386
pubmed: 28338679
Nucleic Acids Res. 2005 Oct 12;33(18):5799-808
pubmed: 16221976
Nat Commun. 2018 Oct 2;9(1):4035
pubmed: 30279420
Cell. 2014 Sep 11;158(6):1402-1414
pubmed: 25215495
Chem Biol. 1999 Aug;6(8):493-505
pubmed: 10421756
Chemistry. 2013 Dec 2;19(49):16772-9
pubmed: 24203528
J Bacteriol. 2010 Oct;192(19):5143-50
pubmed: 20693331
Front Pharmacol. 2017 Oct 26;8:761
pubmed: 29123482
Org Lett. 2017 Oct 6;19(19):5010-5013
pubmed: 28898095
Angew Chem Int Ed Engl. 2019 Dec 19;58(52):18957-18963
pubmed: 31693786
Microbiol Mol Biol Rev. 2002 Jun;66(2):223-49
pubmed: 12040125
Peptides. 2007 Jul;28(7):1344-50
pubmed: 17643554
Nat Prod Rep. 2016 Jan;33(1):73-86
pubmed: 26497201
Nat Microbiol. 2017 Dec;2(12):1676-1685
pubmed: 28993611
Genome Res. 2019 Aug;29(8):1352-1362
pubmed: 31160374
Nat Biotechnol. 2019 May;37(5):540-546
pubmed: 30936562
Chemistry. 2012 Feb 20;18(8):2342-8
pubmed: 22266804
Biochem Biophys Res Commun. 1968 May 10;31(3):488-94
pubmed: 4968234
Nat Chem Biol. 2017 Jan;13(1):30-37
pubmed: 27820803
Nat Chem Biol. 2017 May;13(5):470-478
pubmed: 28244986
Proc Natl Acad Sci U S A. 2015 Apr 28;112(17):E2120-9
pubmed: 25825778
PLoS One. 2015 Feb 17;10(2):e0116871
pubmed: 25689464
Proteomics. 2011 Sep;11(18):3642-50
pubmed: 21751357
Nat Chem Biol. 2011 Oct 09;7(11):794-802
pubmed: 21983601
Chembiochem. 2012 Dec 21;13(18):2671-5
pubmed: 23169772
Appl Environ Microbiol. 2007 Sep;73(17):5523-30
pubmed: 17630307
Proc Natl Acad Sci U S A. 2018 Feb 20;115(8):1718-1723
pubmed: 29439203
BMC Biol. 2019 Jun 12;17(1):47
pubmed: 31189482
Front Pharmacol. 2017 Nov 21;8:828
pubmed: 29209209
Chembiochem. 2015 Jan 19;16(2):205-8
pubmed: 25425189
Bioinformatics. 2017 Oct 15;33(20):3202-3210
pubmed: 28633438
Angew Chem Int Ed Engl. 2019 Jul 1;58(27):9027-9031
pubmed: 31071229
PLoS One. 2013 May 17;8(5):e62946
pubmed: 23690965
Nucleic Acids Res. 2011 Jul;39(Web Server issue):W339-46
pubmed: 21672958
ACS Chem Biol. 2018 Apr 20;13(4):1029-1037
pubmed: 29510029
Nat Microbiol. 2018 Mar;3(3):319-327
pubmed: 29358742
Nat Rev Drug Discov. 2015 Feb;14(2):111-29
pubmed: 25614221
Nat Chem Biol. 2015 Sep;11(9):639-48
pubmed: 26284671
Proc Natl Acad Sci U S A. 2016 Nov 29;113(48):E7645-E7654
pubmed: 27849584
Nat Methods. 2011 May 15;8(7):587-91
pubmed: 21572408
Nat Chem Biol. 2015 Sep;11(9):660-70
pubmed: 26284673
Science. 2009 Jul 10;325(5937):161-5
pubmed: 19589993
Nucleic Acids Res. 2011 Jul;39(Web Server issue):W362-7
pubmed: 21558170
Nat Biotechnol. 2016 Aug 9;34(8):828-837
pubmed: 27504778
EMBO J. 1997 Jul 16;16(14):4174-83
pubmed: 9250661
Nat Commun. 2017 May 23;8:15349
pubmed: 28534477
Nat Biotechnol. 2005 Dec;23(12):1562-7
pubmed: 16311586
Nat Commun. 2015 Sep 28;6:8421
pubmed: 26412281
Nucleic Acids Res. 2020 Jan 8;48(D1):D422-D430
pubmed: 31665416
Angew Chem Int Ed Engl. 2006 Mar 27;45(14):2296-301
pubmed: 16506259
Proc Natl Acad Sci U S A. 2007 Apr 10;104(15):6140-5
pubmed: 17404225
Nucleic Acids Res. 2019 Jan 8;47(D1):D649-D659
pubmed: 30357420
Chembiochem. 2015 May 4;16(7):1115-9
pubmed: 25826784
Chem Biol. 2009 Apr 24;16(4):421-31
pubmed: 19389628
Chem Biol. 2003 Dec;10(12):1225-32
pubmed: 14700630
Cell. 2020 Feb 6;180(3):454-470.e18
pubmed: 32004459
Food Funct. 2019 Mar 20;10(3):1478-1489
pubmed: 30778489
Nat Prod Rep. 2004 Oct;21(5):575-93
pubmed: 15459756
J Comput Biol. 2011 Nov;18(11):1371-81
pubmed: 22035290
Chem Biol. 2007 Jan;14(1):13-22
pubmed: 17254948
mSystems. 2018 Mar 6;3(2):
pubmed: 29556550
Nature. 2016 Jul 27;535(7613):511-6
pubmed: 27466123
Chembiochem. 2016 Sep 15;17(18):1709-12
pubmed: 27443244
mBio. 2021 Feb 16;12(1):
pubmed: 33593964
Nat Chem Biol. 2016 Apr;12(4):233-9
pubmed: 26829473
Biotechnol Appl Biochem. 1990 Aug;12(4):370-5
pubmed: 2119191
Nucleic Acids Res. 2017 Jul 3;45(W1):W49-W54
pubmed: 28460067
Angew Chem Int Ed Engl. 2017 Mar 27;56(14):3770-3821
pubmed: 28323366
Nature. 2015 Jan 22;517(7535):455-9
pubmed: 25561178
Nat Methods. 2020 Nov;17(11):1103-1110
pubmed: 33020656
J Nat Prod. 2014 Aug 22;77(8):1902-9
pubmed: 25116163
Anal Chem. 2005 Jul 15;77(14):4626-39
pubmed: 16013882
Nat Microbiol. 2016 Oct 31;2:16197
pubmed: 27798598
Biologicals. 1997 Sep;25(3):289-97
pubmed: 9324997
Chembiochem. 2005 Feb;6(2):375-85
pubmed: 15651040
J Proteome Res. 2013 Apr 5;12(4):1560-8
pubmed: 23343606
PLoS Comput Biol. 2018 Apr 18;14(4):e1006089
pubmed: 29668671
J Antimicrob Chemother. 2006 Apr;57(4):609-18
pubmed: 16469849

Auteurs

Bahar Behsaz (B)

Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA.
Center for Microbiome Innovation, University of California at San Diego, La Jolla, CA, USA.
Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA.

Edna Bode (E)

Molecular Biotechnology, Department of Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany.

Alexey Gurevich (A)

Center for Algorithmic Biotechnology, Institute of Translational Biomedicine, St. Petersburg State University, St Petersburg, Russia.

Yan-Ni Shi (YN)

Molecular Biotechnology, Department of Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany.

Florian Grundmann (F)

Molecular Biotechnology, Department of Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany.

Deepa Acharya (D)

Tiny Earth Chemistry Hub, University of Wisconsin-Madison, Madison, WI, USA.

Andrés Mauricio Caraballo-Rodríguez (AM)

Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.

Amina Bouslimani (A)

Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.

Morgan Panitchpakdi (M)

Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.

Annabell Linck (A)

Molecular Biotechnology, Department of Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany.

Changhui Guan (C)

The Jackson Laboratory of Medical Genomics, Farmington, CT, USA.

Julia Oh (J)

The Jackson Laboratory of Medical Genomics, Farmington, CT, USA.

Pieter C Dorrestein (PC)

Center for Microbiome Innovation, University of California at San Diego, La Jolla, CA, USA.
Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.

Helge B Bode (HB)

Molecular Biotechnology, Department of Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany. helge.bode@mpi-marburg.mpg.de.
Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt & Senckenberg Research Institute, Frankfurt am Main, Germany. helge.bode@mpi-marburg.mpg.de.
Max-Planck-Institute for Terrestrial Microbiology, Department for Natural Products in Organismic Interactions, Marburg, Germany. helge.bode@mpi-marburg.mpg.de.

Pavel A Pevzner (PA)

Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA. ppevzner@ucsd.edu.

Hosein Mohimani (H)

Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA. hoseinm@andrew.cmu.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH