Whole brain functional recordings at cellular resolution in zebrafish larvae with 3D scanning multiphoton microscopy.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
26 05 2021
26 05 2021
Historique:
received:
26
02
2021
accepted:
20
04
2021
entrez:
27
5
2021
pubmed:
28
5
2021
medline:
3
11
2021
Statut:
epublish
Résumé
Optical recordings of neuronal activity at cellular resolution represent an invaluable tool to investigate brain mechanisms. Zebrafish larvae is one of the few model organisms where, using fluorescence-based reporters of the cell activity, it is possible to optically reconstruct the neuronal dynamics across the whole brain. Typically, leveraging the reduced light scattering, methods like lightsheet, structured illumination, and light-field microscopy use spatially extended excitation profiles to detect in parallel activity signals from multiple cells. Here, we present an alternative design for whole brain imaging based on sequential 3D point-scanning excitation. Our approach relies on a multiphoton microscope integrating an electrically tunable lens. We first apply our approach, adopting the GCaMP6s activity reporter, to detect functional responses from retinal ganglion cells (RGC) arborization fields at different depths within the zebrafish larva midbrain. Then, in larvae expressing a nuclear localized GCaMP6s, we recorded whole brain activity with cellular resolution. Adopting a semi-automatic cell segmentation, this allowed reconstructing the activity from up to 52,000 individual neurons across the brain. In conclusion, this design can easily retrofit existing imaging systems and represents a compact, versatile and reliable tool to investigate neuronal activity across the larva brain at high resolution.
Identifiants
pubmed: 34040051
doi: 10.1038/s41598-021-90335-y
pii: 10.1038/s41598-021-90335-y
pmc: PMC8154985
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
11048Références
Neuron. 2015 Feb 4;85(3):462-83
pubmed: 25654253
Nat Methods. 2012 Jan 08;9(2):201-8
pubmed: 22231641
Elife. 2016 Mar 22;5:e12741
pubmed: 27003593
Neuron. 2017 May 17;94(4):774-789.e5
pubmed: 28521132
J Neurophysiol. 2016 Sep 1;116(3):1012-23
pubmed: 27281749
Elife. 2017 Sep 20;6:
pubmed: 28930070
Neuroimage. 2011 Feb 1;54(3):2033-44
pubmed: 20851191
Biomed Opt Express. 2019 Sep 12;10(10):5059-5080
pubmed: 31646030
Curr Opin Neurobiol. 2018 Jun;50:190-200
pubmed: 29642044
Opt Lett. 2008 Sep 15;33(18):2146-8
pubmed: 18794959
Nat Neurosci. 2008 Jun;11(6):713-20
pubmed: 18432198
Neuron. 2020 Nov 25;108(4):722-734.e5
pubmed: 32966764
Opt Express. 2013 Sep 9;21(18):21010-26
pubmed: 24103973
Neuron. 2016 Jan 20;89(2):269-84
pubmed: 26774159
Nat Commun. 2017 Sep 20;8(1):612
pubmed: 28931809
Science. 2008 Nov 14;322(5904):1065-9
pubmed: 18845710
Biomed Opt Express. 2011 Jul 1;2(7):2035-46
pubmed: 21750778
Nat Methods. 2017 Nov;14(11):1107-1114
pubmed: 28892088
Nat Methods. 2016 Dec;13(12):1001-1004
pubmed: 27749836
Opt Lett. 2011 Sep 1;36(17):3503-5
pubmed: 21886258
Curr Opin Neurobiol. 2015 Jun;32:78-86
pubmed: 25636154
J Biophotonics. 2018 Feb;11(2):
pubmed: 28700127
PLoS Comput Biol. 2019 Apr 8;15(4):e1006699
pubmed: 30958870
Curr Opin Neurobiol. 2018 Jun;50:136-145
pubmed: 29486425
Nat Neurosci. 2016 Aug 26;19(9):1154-64
pubmed: 27571194
Neuron. 2019 Jul 3;103(1):21-38.e5
pubmed: 31147152
Biomed Opt Express. 2016 Apr 04;7(5):1656-71
pubmed: 27231612