A homogeneous dataset of polyglutamine and glutamine rich aggregating peptides simulations.

Aggregation Coarse-grained simulation Molecular dynamics Oligomerization Q-rich SIRAH Soluble oligomer polyQ

Journal

Data in brief
ISSN: 2352-3409
Titre abrégé: Data Brief
Pays: Netherlands
ID NLM: 101654995

Informations de publication

Date de publication:
Jun 2021
Historique:
received: 10 03 2021
revised: 13 04 2021
accepted: 20 04 2021
entrez: 26 5 2021
pubmed: 27 5 2021
medline: 27 5 2021
Statut: epublish

Résumé

This dataset contains a collection of molecular dynamics (MD) simulations of polyglutamine (polyQ) and glutamine-rich (Q-rich) peptides in the multi-microsecond timescale. Primary data from coarse-grained simulations performed using the SIRAH force field has been processed to provide fully atomistic coordinates. The dataset encloses MD trajectories of polyQs of 4 (Q4), 11 (Q11), and 36 (Q36) amino acids long. In the case of Q11, simulations in presence of Q5 and QEQQQ peptides, which modulate aggregation, are also included. The dataset also comprises MD trajectories of the gliadin related p31-43 peptide, and Insulin's C-peptide at pH=7 and pH=3.2, which constitute examples of Q-rich and Q-poor aggregating peptides. The dataset grants molecular insights on the role of glutamines in spontaneous and unbiased ab-initio aggregation of a series of peptides using a homogeneous set of simulations [1]. The trajectory files are provided in Protein Data Bank (PDB) format containing the Cartesian coordinates of all heavy atoms in the aggregating peptides. Further analyses of the trajectories can be performed directly using any molecular visualization/analysis software suites.

Identifiants

pubmed: 34036130
doi: 10.1016/j.dib.2021.107109
pii: S2352-3409(21)00393-0
pmc: PMC8138716
doi:

Types de publication

Journal Article

Langues

eng

Pagination

107109

Informations de copyright

© 2021 Published by Elsevier Inc.

Déclaration de conflit d'intérêts

The authors declare that they have no known competing financial interests or personal relationships, which have or could be perceived to have influenced the work reported in this article.

Références

Bioinformatics. 2016 May 15;32(10):1568-70
pubmed: 26773132
J Mol Graph. 1996 Feb;14(1):33-8, 27-8
pubmed: 8744570
Comput Struct Biotechnol J. 2021 Mar 13;19:1595-1602
pubmed: 33868596
J Chem Theory Comput. 2015 Aug 11;11(8):3696-713
pubmed: 26574453
J Chem Theory Comput. 2019 Apr 9;15(4):2719-2733
pubmed: 30810317

Auteurs

Exequiel E Barrera (EE)

Instituto de Histología y Embriología (IHEM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CC56, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina.
Biomolecular Simulations Group, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400 Montevideo, Uruguay.

Sergio Pantano (S)

Biomolecular Simulations Group, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400 Montevideo, Uruguay.
Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China.

Francesco Zonta (F)

Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China.

Classifications MeSH