Advanced Analysis of Diffusion Tensor Imaging Along With Machine Learning Provides New Sensitive Measures of Tissue Pathology and Intra-Lesion Activity in Multiple Sclerosis.
diffusion tensor imaging
intra-lesion pathology
lesions
single-shell high angular resolution diffusion imaging
support vector machine
tractography
Journal
Frontiers in neuroscience
ISSN: 1662-4548
Titre abrégé: Front Neurosci
Pays: Switzerland
ID NLM: 101478481
Informations de publication
Date de publication:
2021
2021
Historique:
received:
26
11
2020
accepted:
15
04
2021
entrez:
24
5
2021
pubmed:
25
5
2021
medline:
25
5
2021
Statut:
epublish
Résumé
Tissue pathology in multiple sclerosis (MS) is highly complex, requiring multi-dimensional analysis. In this study, our goal was to test the feasibility of obtaining high angular resolution diffusion imaging (HARDI) metrics through single-shell modeling of diffusion tensor imaging (DTI) data, and investigate how advanced measures from single-shell HARDI and DTI tractography perform relative to classical DTI metrics in assessing MS pathology. We examined 52 relapsing-remitting MS patients who had 3T anatomical brain MRI and DTI. Single-shell HARDI modeling yielded 5 sub-voxel-based metrics, totalling 11 diffusion measures including 4 DTI and 2 tractography metrics. Based on machine learning of 3-dimensional regions of interest, we evaluated the importance of the measures through several tissue classification tasks. These included two within-subject comparisons: lesion versus normal appearing white matter (NAWM); and lesion core versus shell. Further, by stratifying patients as having high (above 75%
Identifiants
pubmed: 34025338
doi: 10.3389/fnins.2021.634063
pmc: PMC8138061
doi:
Types de publication
Journal Article
Langues
eng
Pagination
634063Informations de copyright
Copyright © 2021 Oladosu, Liu, Pike, Koch, Metz and Zhang.
Déclaration de conflit d'intérêts
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Références
Neuroimage. 2012 Feb 15;59(4):3774-83
pubmed: 22119648
Neurol Neuroimmunol Neuroinflamm. 2018 Sep 26;5(6):e502
pubmed: 30345330
Ann Neurol. 2020 May;87(5):710-724
pubmed: 32057118
Neuroimage. 2007 Apr 1;35(2):467-77
pubmed: 17258908
AJNR Am J Neuroradiol. 2005 Oct;26(9):2183-6
pubmed: 16219820
Funct Neurol. 2017 Apr/Jun;32(2):97-101
pubmed: 28676143
Neuroimage. 2015 Jan 15;105:32-44
pubmed: 25462697
Neuroimage. 2018 Nov 15;182:117-127
pubmed: 29097317
Neuroimage. 2012 Aug 15;62(2):782-90
pubmed: 21979382
Neuroimage Clin. 2017 Dec 08;17:1028-1035
pubmed: 29387524
Neuroimage. 2002 Oct;17(2):825-41
pubmed: 12377157
Neuroimage. 2012 Jul 16;61(4):1000-16
pubmed: 22484410
Mult Scler. 2014 Feb;20(2):214-9
pubmed: 23877971
Neuroimage. 2016 Jan 15;125:1063-1078
pubmed: 26481672
Biometrics. 1988 Sep;44(3):837-45
pubmed: 3203132
NMR Biomed. 2010 Aug;23(7):865-72
pubmed: 20882528
Ann Clin Transl Neurol. 2017 Aug 15;4(9):663-679
pubmed: 28904988
Neurologist. 2007 Mar;13(2):45-56
pubmed: 17351524
Neuroimage. 2010 Oct 1;52(4):1374-89
pubmed: 20580932
Med Image Anal. 2001 Jun;5(2):143-56
pubmed: 11516708
Radiol Med. 2012 Oct;117(7):1215-24
pubmed: 22744352
J Clin Neurosci. 2012 Dec;19(12):1689-94
pubmed: 23084347
Prog Nucl Magn Reson Spectrosc. 2019 Jun - Aug;112-113:1-16
pubmed: 31481155
Mult Scler. 2020 Dec;26(14):1877-1888
pubmed: 31769728
Med Image Anal. 2008 Feb;12(1):26-41
pubmed: 17659998
Neuroimage. 2012 Oct 1;62(4):2222-31
pubmed: 22366334
N Engl J Med. 2018 Jan 11;378(2):169-180
pubmed: 29320652
J Magn Reson Imaging. 2019 Jun;49(6):1750-1759
pubmed: 30230112
Neuroradiology. 2019 Jan;61(1):71-79
pubmed: 30539215
Brain. 2008 Mar;131(Pt 3):808-17
pubmed: 18234696
Magn Reson Med. 2007 Sep;58(3):497-510
pubmed: 17763358
Hum Brain Mapp. 2012 Sep;33(9):2062-71
pubmed: 21882300
Med Image Comput Comput Assist Interv. 2013;16(Pt 1):695-702
pubmed: 24505728