Elevated carbon dioxide reduces a common soybean leaf endophyte.

Methylobacterium FACE (free-air CO2 enrichment) Glycine max (soybean) endophytes fungi in vitro assays microbiome

Journal

Global change biology
ISSN: 1365-2486
Titre abrégé: Glob Chang Biol
Pays: England
ID NLM: 9888746

Informations de publication

Date de publication:
Sep 2021
Historique:
received: 01 12 2020
accepted: 30 04 2021
pubmed: 23 5 2021
medline: 18 8 2021
entrez: 22 5 2021
Statut: ppublish

Résumé

Free-air CO

Identifiants

pubmed: 34022078
doi: 10.1111/gcb.15716
doi:

Substances chimiques

Carbon Dioxide 142M471B3J

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

4154-4168

Subventions

Organisme : University of Illinois at Urbana-Champaign Campus Research Board
ID : RB18106
Organisme : Division of Biological Infrastructure
ID : NSF DBI-1559908
Organisme : National Institute of Food and Agriculture
ID : AG 2018-67012-27

Informations de copyright

© 2021 John Wiley & Sons Ltd.

Références

Adame-Álvarez, R.-M., Mendiola-Soto, J., & Heil, M. (2014). Order of arrival shifts endophyte-pathogen interactions in bean from resistance induction to disease facilitation. FEMS Microbiology Letters, 355(2), 100-107. https://doi.org/10.1111/1574-6968.12454
Ainsworth, E. A., Davey, P. A., Bernacchi, C. J., Orla, C., Dermody, O. C., Heaton, E. A., Moore, D. J., Morgan, P. B., Naidu, S. L., Ra, H. S. Y., Zhu, X. G., Curtis, P. S., & Long, S. P. (2002). A meta-analysis of elevated [CO2] effects on soybean (Glycine max) physiology, growth and yield. Global Change Biology, 8(8), 695-709. https://doi.org/10.1046/j.1365-2486.2002.00498.x
Ainsworth, E. A., & Long, S. P. (2005). What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytologist, 165(2), 351-372. https://doi.org/10.1111/j.1469-8137.2004.01224.x
Ainsworth, E. A., & Long, S. P. (2021). 30 years of free-air carbon dioxide enrichment (FACE): What have we learned about future crop productivity and its potential for adaptation? Global Change Biology, 27(1), 27-49. https://doi.org/10.1111/gcb.15375
Alberton, O., Kuyper, T. W., & Gorissen, A. (2005). Taking mycocentrism seriously: Mycorrhizal fungal and plant responses to elevated CO2. New Phytologist, 167(3), 859-868. https://doi.org/10.1111/j.1469-8137.2005.01458.x
Ardanov, P., Sessitsch, A., Häggman, H., Kozyrovska, N., & Pirttilä, A. M. (2012). Methylobacterium-induced endophyte community changes correspond with protection of plants against pathogen attack. PLoS One, 7(10), e46802. https://doi.org/10.1371/journal.pone.0046802
Arnold, A. E., Mejía, L. C., Kyllo, D., Rojas, E. I., Maynard, Z., Robbins, N., & Herre, E. A. (2003). Fungal endophytes limit pathogen damage in a tropical tree. Proceedings of the National Academy of Sciences of the United States of America, 100(26), 15649-15654. https://doi.org/10.1073/pnas.2533483100
Bates, D., Maechler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1-48. https://doi.org/10.18637/jss.v067.i01
Becklin, K. M., Walker, S. M., Way, D. A., & Ward, J. K. (2017). CO2 studies remain key to understanding a future world. New Phytologist, 214(1), 34-40. https://doi.org/10.1111/nph.14336
Brown, S. P., Ferrer, A., Dalling, J. W., & Heath, K. D. (2016). Don’t put all your eggs in one basket: A cost-effective and powerful method to optimize primer choice for rRNA environmental community analyses using the Fluidigm Access Array. Molecular Ecology Resources, 16(4), 946-956. https://doi.org/10.1111/1755-0998.12507
Bullington, L. S., Lekberg, Y., & Larkin, B. G. (2021). Insufficient sampling constrains our characterization of plant microbiomes. Scientific Reports, 11(1), 1-14. https://doi.org/10.1038/s41598-021-83153-9
Burdon, J. J., Woods, M. J., Searle, S. D., Woods, M. J., & Brockwell, J. (1999). Variation in the effectiveness of symbiotic associations between native rhizobia and temperate Australian Acacia: Within-species interactions. Journal of Applied Ecology, 36(3), 398-408. https://doi.org/10.1046/j.1365-2664.2000.00470.x
Busby, P. E., Soman, C., Wagner, M. R., Friesen, M. L., Kremer, J., Bennett, A., Morsy, M., Eisen, J. A., Leach, J. E., & Dangl, J. L. (2017). Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS Biology, 15(3), e2001793. https://doi.org/10.1371/journal.pbio.2001793
Chakraborty, S., & Datta, S. (2002). How will plant pathogens adapt to host plant resistance at elevated CO2 under a changing climate? New Phytologist, 159(3), 733-742. https://doi.org/10.1046/j.1469-8137.2003.00842.x
Chen, W., Liu, H., Wurihan, Gao, Y., Card, S. D., & Ren, A. (2017). The advantages of endophyte-infected over uninfected tall fescue in the growth and pathogen resistance are counteracted by elevated CO2. Scientific Reports, 7(1), 28-6952. https://doi.org/10.1038/s41598-017-07183-y
Christian, N., Herre, E. A., & Clay, K. (2019). Foliar endophytic fungi alter patterns of nitrogen uptake and distribution in Theobroma cacao. New Phytologist, 222(3), 1573-1583. https://doi.org/10.1111/nph.15693
Christian, N., Herre, E. A., Mejia, L. C., & Clay, K. (2017). Exposure to the leaf litter microbiome of healthy adults protects seedlings from pathogen damage. Proceedings of the Royal Society B: Biological Sciences, 284(1858), 20170641. https://doi.org/10.1098/rspb.2017.0641
Christian, N., Sullivan, C., Visser, N. D., & Clay, K. (2016). Plant host and geographic location drive endophyte community composition in the face of perturbation. Microbial Ecology, 72(3), 621-632. https://doi.org/10.1007/s00248-016-0804-y
Compant, S., Van Der Heijden, M. G. A., & Sessitsch, A. (2010). Climate change effects on beneficial plant-microorganism interactions. FEMS Microbiology Ecology, 73(2), 197-214. https://doi.org/10.1111/j.1574-6941.2010.00900.x
Crawford, K. M., & Rudgers, J. A. (2012). Plant species diversity and genetic diversity within a dominant species interactively affect plant community biomass. Journal of Ecology, 100(6), 1512-1521. https://doi.org/10.1111/j.1365-2745.2012.02016.x
Dorodnikov, M., Blagodatskaya, E., Blagodatsky, S., Fangmeier, A., & Kuzyakov, Y. (2009). Stimulation of r- vs. K-selected microorganisms by elevated atmospheric CO2 depends on soil aggregate size. FEMS Microbiology Ecology, 69(1), 43-52. https://doi.org/10.1111/j.1574-6941.2009.00697.x
Dourado, M. N., Camargo Neves, A. A., Santos, D. S., & Araújo, W. L. (2015). Biotechnological and agronomic potential of endophytic pink-pigmented methylotrophic Methylobacterium spp. BioMed Research International, 2015(1), 1-19. https://doi.org/10.1155/2015/909016
Eastburn, D. M., Degennaro, M. M., Delucia, E. H., Dermody, O., & Mcelrone, A. J. (2010). Elevated atmospheric carbon dioxide and ozone alter soybean diseases at SoyFACE. Global Change Biology, 16(1), 320-330. https://doi.org/10.1111/j.1365-2486.2009.01978.x
Estrada, C., Wcislo, W. T., & Van Bael, S. A. (2013). Symbiotic fungi alter plant chemistry that discourages leaf-cutting ants. New Phytologist, 198(1), 241-251. https://doi.org/10.1111/nph.12140
Gehring, C. A., Sthultz, C. M., Flores-Rentería, L., Whipple, A. V., & Whitham, T. G. (2017). Tree genetics defines fungal partner communities that may confer drought tolerance. Proceedings of the National Academy of Sciences of the United States of America, 114(42), 11169-11174. https://doi.org/10.1073/pnas.1704022114
Giauque, H., Connor, E. W., & Hawkes, C. V. (2019). Endophyte traits relevant to stress tolerance, resource use and habitat of origin predict effects on host plants. New Phytologist, 221(4), 2239-2249. https://doi.org/10.1111/nph.15504
Glenny, W. R., Runyon, J. B., & Burkle, L. A. (2018). Drought and increased CO2 alter floral visual and olfactory traits with context-dependent effects on pollinator visitation. New Phytologist, 220(3), 785-798. https://doi.org/10.1111/nph.15081
Gonçalves, H. V., Oki, Y., Bordignon, L., Ferreira, M. C., dos Santos, Jr., J. E., Tameirão, L. B., Santos, F. R., Kalapothakis, E., & Fernandes, G. W. (2021). Endophytic fungus diversity in soybean plants submitted to conditions of elevated atmospheric CO2 and temperature. Canadian Journal of Microbiology, 67(4), 290-300. https://doi.org/10.1139/cjm-2020-0261
Grover, M., Maheswari, M., Desai, S., Gopinath, K. A., & Venkateswarlu, B. (2015). Elevated CO2: Plant associated microorganisms and carbon sequestration. Applied Soil Ecology, 95(1), 73-85. https://doi.org/10.1016/j.apsoil.2015.05.006
Hardoim, P. R., van Overbeek, L. S., Berg, G., Pirttilä, A. M., Compant, S., Campisano, A., Döring, M., & Sessitsch, A. (2015). The hidden world within plants: Ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiology and Molecular Biology Reviews, 79(3), 293-320. https://doi.org/10.1128/MMBR.00050-14
Heath, K. D. (2010). Intergenomic epistasis and coevolutionary constraint in plants and rhizobia. Evolution, 64(5), 1446-1458. https://doi.org/10.1111/j.1558-5646.2009.00913.x
Hilber-Bodmer, M., Schmid, M., Ahrens, C. H., & Freimoser, F. M. (2017). Competition assays and physiological experiments of soil and phyllosphere yeasts identify Candida subhashii as a novel antagonist of filamentous fungi. BMC Microbiology, 17(1), 1-15. https://doi.org/10.1186/s12866-016-0908-z
Huang, Y.-L.-L., Zimmerman, N. B., & Arnold, A. E. (2018). Observations on the early establishment of foliar endophytic fungi in leaf discs and living leaves of a model woody angiosperm, Populus trichocarpa (Salicaceae). Journal of Fungi, 4(2), 1-15. https://doi.org/10.3390/jof4020058
Ivanova, E. G., Doronina, N. V., & Trotsenko, Y. A. (2001). Aerobic methylobacteria are capable of synthesizing auxins. Microbiology, 70(4), 392-397. https://doi.org/10.1023/A:1010469708107
Kivlin, S. N., Emery, S. M., & Rudgers, J. A. (2013). Fungal symbionts alter plant responses to global change. American Journal of Botany, 100(7), 1445-1457. https://doi.org/10.3732/ajb.1200558
Kumar, M., Tomar, R. S., Lade, H., & Paul, D. (2016). Methylotrophic bacteria in sustainable agriculture. World Journal of Microbiology and Biotechnology, 32(7), 1-9. https://doi.org/10.1007/s11274-016-2074-8
Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). lmerTest Package: tests in linear mixed effects models. Journal of Statistical Software, 82(13), 1-26. https://doi.org/10.18637/jss.v082.i13
Lau, J. A., & Lennon, J. T. (2012). Rapid responses of soil microorganisms improve plant fitness in novel environments. Proceedings of the National Academy of Sciences of the United States of America, 109(35), 14058-14062. https://doi.org/10.1073/pnas.1202319109
Leakey, A. D. B. (2009). Rising atmospheric carbon dioxide concentration and the future of C4 crops for food and fuel. Proceedings of the Royal Society B: Biological Sciences, 276(1666), 2333-2343. https://doi.org/10.1098/rspb.2008.1517
Leakey, A. D. B., & Lau, J. A. (2012). Evolutionary context for understanding and manipulating plant responses to past, present and future atmospheric [CO2]. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1588), 613-629. https://doi.org/10.1098/rstb.2011.0248
Legendre, P., & Gallagher, E. D. (2001). Ecologically meaningful transformations for ordination of species data. Oecologia, 129(2), 271-280. https://doi.org/10.1007/s004420100716
Leopold, D. R., & Busby, P. E. (2020). Host genotype and colonist arrival order jointly govern plant microbiome composition and function. Current Biology, 30(16), 3260-3266. https://doi.org/10.1016/j.cub.2020.06.011
Madhaiyan, M., Suresh Reddy, B. V., Anandham, R., Senthilkumar, M., Poonguzhali, S., Sundaram, S. P., & Sa, T. (2006). Plant growth-promoting Methylobacterium induces defense responses in groundnut (Arachis hypogaea L.) compared with rot pathogens. Current Microbiology, 53(4), 270-276. https://doi.org/10.1007/s00284-005-0452-9
Malik, A. A., Martiny, J. B. H., Brodie, E. L., Martiny, A. C., Treseder, K. K., & Allison, S. D. (2020). Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change. The ISME Journal, 14(1), 1-9. https://doi.org/10.1038/s41396-019-0510-0
Marilley, L., Hartwig, U. A., & Aragno, M. (1999). Influence of an elevated atmospheric CO2 content on soil and rhizosphere bacterial communities beneath Lolium perenne and Trifolium repens under field conditions. Microbial Ecology, 38(1), 39-49. https://doi.org/10.1007/s002489900155
Marks, S., & Clay, K. (1990). Effects of CO2 enrichment, nutrient addition, and fungal endophyte-infection on the growth of two grasses. Oecologia, 84(2), 207-214. https://doi.org/10.1007/BF00318273
Meena, K. K., Kumar, M., Kalyuzhnaya, M. G., Yandigeri, M. S., Singh, D. P., Saxena, A. K., & Arora, D. K. (2012). Epiphytic pink-pigmented methylotrophic bacteria enhance germination and seedling growth of wheat (Triticum aestivum) by producing phytohormone. Antonie Van Leeuwenhoek, 101(4), 777-786. https://doi.org/10.1007/s10482-011-9692-9
Mejía, L. C., Herre, E. A., Sparks, J. P., Winter, K., García, M., Van Bael, S. A., Stitt, J., Shi, Z., Zhang, Y., Guiltinan, M. J., & Maximova, S. N. (2014). Pervasive effects of an endophytic fungus on host genetic and phenotypic expression in a tropical tree. Frontiers in Microbiology, 5(1), 1-15. https://doi.org/10.3389/fmicb.2014.00479
Minami, T., Anda, M., Mitsui, H., Sugawara, M., Kaneko, T., Sato, S., Ikeda, S., Okubo, T., Tsurumaru, H., & Minamisawa, K. (2016). Metagenomic analysis revealed methylamine and ureide utilization of soybean-associated Methylobacterium. Microbes and Environments, 31(3), 268-278. https://doi.org/10.1264/jsme2.ME16035
Newman, J. A., Abner, M. L., Dado, R. G., Gibson, D. J., Brookings, A., & Parsons, A. J. (2003). Effects of elevated CO2, nitrogen and fungal endophyte-infection on tall fescue: Growth, photosynthesis, chemical composition and digestibility. Global Change Biology, 9(3), 425-437. https://doi.org/10.1046/j.1365-2486.2003.00601.x
Oita, S., Ibáñez, A., Lutzoni, F., Miadlikowska, J., Geml, J., Lewis, L. A., Hom, E. F. Y., Carbone, I., U’Ren, J. M., & Arnold, A. E. (2021). Climate and seasonality drive the richness and composition of tropical fungal endophytes at a landscape scale. Communications Biology, 4(1). https://doi.org/10.1038/s42003-021-01826-7
Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O'Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., Szoecs, E., & Wagner, H. (2019). vegan: Community ecology package. https://CRAN.R-project.org/package=vegan
Pangga, I. B., Chakraborty, S., & Yates, D. (2004). Canopy size and induced resistance in Stylosanthes scabra determine anthracnose severity at high CO2. Phytopathology, 94(3), 221-227. https://doi.org/10.1094/PHYTO.2004.94.3.221
Parker, M. (1995). Plant fitness variation caused by different mutualist genotypes. Ecology, 76(5), 1525-1535. https://doi.org/10.2307/1938154
R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
Ramos, P., Rivas, N., Pollmann, S., Casati, P., & Molina-Montenegro, M. A. (2018). Hormonal and physiological changes driven by fungal endophytes increase Antarctic plant performance under UV-B radiation. Fungal Ecology, 34(1), 76-82. https://doi.org/10.1016/j.funeco.2018.05.006
Rodriguez, R. J., White, J. F., Arnold, A. E., & Redman, R. S. (2009). Fungal endophytes: diversity and functional roles. New Phytologist, 182(2), 314-330. https://doi.org/10.1111/j.1469-8137.2009.02773.x
Rogers, A., Allen, D. J., Davey, P. A., Morgan, P. B., Ainsworth, E. A., Bernacchi, C. J., Cornic, G., Dermody, O., Dohleman, F. G., Heaton, E., Mahoney, J., Zhu, X.-G., Delucia, E. H., Ort, D. R., & Long, S. (2004). Leaf photosynthesis and carbohydrate dynamics of soybeans grown throughout their life-cycle under Free-Air Carbon dioxide Enrichment. Plant, Cell and Environment, 27(4), 449-458. https://doi.org/10.1111/j.1365-3040.2004.01163.x
Rojas, E. I., Rehner, S. A., Samuels, G. J., Van Bael, S. A., Herre, E. A., Cannon, P., Chen, R., Pang, J., Wang, R., Zhang, Y., Peng, Y.-Q., & Sha, T. (2010). Colletotrichum gloeosporioides s.l. associated with Theobroma cacao and other plants in Panama: multilocus phylogenies distinguish host-associated pathogens from asymptomatic endophytes. Mycologia, 102(6), 1318-1338. https://doi.org/10.3852/09-244
Rudgers, J. A., Afkhami, M. E., Bell-Dereske, L., Chung, Y. A., Crawford, K. M., Kivlin, S. N., Mann, M. A., & Nuñez, M. A. (2020). Climate disruption of plant-microbe interactions. Annual Review of Ecology, Evolution, and Systematics, 51(1), 561-586. https://doi.org/10.1146/annurev-ecolsys-011720-090819
Ryan, G. D., Rasmussen, S., Xue, H., Parsons, A. J., & Newman, J. A. (2014). Metabolite analysis of the effects of elevated CO2 and nitrogen fertilization on the association between tall fescue (Schedonorus arundinaceus) and its fungal symbiont Neotyphodium coenophialum. Plant, Cell and Environment, 37(1), 204-212. https://doi.org/10.1111/pce.12146
Ryan, R. P., Germaine, K., Franks, A., Ryan, D. J., & Dowling, D. N. (2008). Bacterial endophytes: Recent developments and applications. FEMS Microbiology Letters, 278(1), 1-9. https://doi.org/10.1111/j.1574-6968.2007.00918.x
Schortemeyer, M., Hartwig, U. A., Hendrey, G. R., & Sadowsky, M. J. (1996). Microbial community changes in the rhizospheres of white clover and perennial ryegrass exposed to Free Air Carbon dioxide Enrichment (FACE). Soil Biology and Biochemistry, 28(12), 1717-1724. https://doi.org/10.1016/S0038-0717(96)00243-X
Simms, E. L., Taylor, D. L., Povich, J., Shefferson, R. P., Sachs, J. L., Urbina, M., & Tausczik, Y. (2006). An empirical test of partner choice mechanisms in a wild legume-rhizobium interaction. Proceedings of the Royal Society B: Biological Sciences, 273(1582), 77-81. https://doi.org/10.1098/rspb.2005.3292
Springer, C. J., & Ward, J. K. (2007). Flowering time and elevated atmospheric CO2. New Phytologist, 176(2), 243-255. https://doi.org/10.1111/j.1469-8137.2007.02196.x
Sy, A., Giraud, E., Jourand, P., Garcia, N., Willems, A., de Lajudie, P., Prin, Y., Neyra, M., Gillis, M., Boivin-Masson, C., & Dreyfus, B. (2001). Methylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. Journal of Bacteriology, 183(1), 214-220. https://doi.org/10.1128/JB.183.1.214
Tellez, P. (2019). Tropical plants and fungal symbionts: Leaf functional traits as drivers of plant-fungal interactions. (Doctoral dissertation, Tulane University School of Science and Engineering).
Trivedi, P., Leach, J. E., Tringe, S. G., Sa, T., & Singh, B. K. (2020). Plant-microbiome interactions: From community assembly to plant health. Nature Reviews Microbiology, 18(11), 607-621. https://doi.org/10.1038/s41579-020-0412-1
U’Ren, J. M., Lutzoni, F., Miadlikowska, J., Zimmerman, N. B., Carbone, I., May, G., & Arnold, A. E. (2019). Host availability drives distributions of fungal endophytes in the imperilled boreal realm. Nature Ecology & Evolution, 3(10), 1430-1437. https://doi.org/10.1038/s41559-019-0975-2
Van Bael, S., Estrada, C., & Arnold, A. E. (2017). Foliar endophyte communities and leaf traits in tropical trees. In J. Dighton & J. F. White (Eds.), The fungal community: its organization and role in the ecosystem (4th ed, pp. 79-94). CRC Press. https://doi.org/10.1201/9781315119496-7
Weiss, S., Van Treuren, W., Lozupone, C., Faust, K., Friedman, J., Deng, Y., Xia, L. C., Xu, Z. Z., Ursell, L., Alm, E. J., Birmingham, A., Cram, J. A., Fuhrman, J. A., Raes, J., Sun, F., Zhou, J., & Knight, R. (2016). Correlation detection strategies in microbial data sets vary widely in sensitivity and precision. ISME Journal, 10(7), 1669-1681. https://doi.org/10.1038/ismej.2015.235
Whitaker, B. K., & Bakker, M. G. (2019). Bacterial endophyte antagonism toward a fungal pathogen in vitro does not predict protection in live plant tissue. FEMS Microbiology Ecology, 95(2), fiy237. https://doi.org/10.1093/femsec/fiy237
Whitham, T. G., Bailey, J. K., Schweitzer, J. A., Shuster, S. M., Bangert, R. K., Leroy, C. J., Lonsdorf, E. V., Allan, G. J., DiFazio, S. P., Potts, B. M., Fischer, D. G., Gehring, C. A., Lindroth, R. L., Marks, J. C., Hart, S. C., Wimp, G. M., & Wooley, S. C. (2006). A framework for community and ecosystem genetics: From genes to ecosystems. Nature Reviews Genetics, 7(7), 510-523. https://doi.org/10.1038/nrg1877
Wolf, J., O’Neill, N. R., Rogers, C. A., Muilenberg, M. L., & Ziska, L. H. (2010). Elevated atmospheric carbon dioxide concentrations amplify Alternaria alternata sporulation and total antigen production. Environmental Health Perspectives, 118(9), 1223-1228. https://doi.org/10.1289/ehp.0901867
Yoshida, S., Hiradate, S., Koitabashi, M., Kamo, T., & Tsushima, S. (2017). Phyllosphere Methylobacterium bacteria contain UVA-absorbing compounds. Journal of Photochemistry and Photobiology B: Biology, 167(1), 168-175. https://doi.org/10.1016/j.jphotobiol.2016.12.019
Yu, Z., Li, Y., Hu, X., Jin, J., Wang, G., Tang, C., Liu, J., Liu, X., Franks, A., Egidi, E., & Xie, Z. (2018). Elevated CO2 increases the abundance but simplifies networks of soybean rhizosphere fungal community in Mollisol soils. Agriculture, Ecosystems and Environment, 264(1), 94-98. https://doi.org/10.1016/j.agee.2018.05.006
Yu, Z., Li, Y., Wang, G., Liu, J., Liu, J., Liu, X., Herbert, S. J., & Jin, J. (2016). Effectiveness of elevated CO2 mediating bacterial communities in the soybean rhizosphere depends on genotypes. Agriculture, Ecosystems and Environment, 231(1), 229-232. https://doi.org/10.1016/j.agee.2016.06.043
Zanne, A. E., Abarenkov, K., Afkhami, M. E., Aguilar-Trigueros, C. A., Bates, S., Bhatnagar, J. M., Busby, P. E., Christian, N., Cornwell, W. K., Crowther, T. W., Flores-Moreno, H., Floudas, D., Gazis, R., Hibbett, D., Kennedy, P., Lindner, D. L., Maynard, D. S., Milo, A. M., Nilsson, R. H., … Treseder, K. K. (2020). Fungal functional ecology: Bringing a trait-based approach to plant-associated fungi. Biological Reviews, 95(2), 409-433. https://doi.org/10.1111/brv.12570
Zhang, J. (2016). spaa: Species association analysis. R package version 0.2.2. https://CRAN.R-project.org/package=spaa

Auteurs

Natalie Christian (N)

Department of Biology, University of Louisville, Louisville, KY, USA.
Department of Plant Biology, School of Integrative Biology, University of Illinois, Urbana, IL, USA.

Baldemar Espino Basurto (B)

Department of Plant Biology, School of Integrative Biology, University of Illinois, Urbana, IL, USA.

Amber Toussaint (A)

Department of Plant Biology, School of Integrative Biology, University of Illinois, Urbana, IL, USA.

Xinyan Xu (X)

Department of Plant Biology, School of Integrative Biology, University of Illinois, Urbana, IL, USA.

Elizabeth A Ainsworth (EA)

Department of Plant Biology, School of Integrative Biology, University of Illinois, Urbana, IL, USA.
USDA ARS Global Change and Photosynthesis Research Unit, Urbana, IL, USA.
Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, USA.

Posy E Busby (PE)

Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA.

Katy D Heath (KD)

Department of Plant Biology, School of Integrative Biology, University of Illinois, Urbana, IL, USA.
Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, USA.

Articles similaires

Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
Populus Soil Microbiology Soil Microbiota Fungi
Genome, Viral Ralstonia Composting Solanum lycopersicum Bacteriophages
Semiconductors Photosynthesis Polymers Carbon Dioxide Bacteria

Classifications MeSH