Diversity in cell differentiation, histology, phenotype and vasculature of mass-forming intrahepatic cholangiocarcinomas.


Journal

Histopathology
ISSN: 1365-2559
Titre abrégé: Histopathology
Pays: England
ID NLM: 7704136

Informations de publication

Date de publication:
Nov 2021
Historique:
revised: 27 04 2021
received: 12 01 2021
accepted: 17 05 2021
pubmed: 22 5 2021
medline: 9 2 2022
entrez: 21 5 2021
Statut: ppublish

Résumé

Mass-forming intrahepatic cholangiocarcinomas (MF-iCCAs), involving small bile ducts, bile ductules or canals of Hering, remain treated as a single entity. We aimed to examine the diversity in histology, phenotype and tumour vasculature of MF-iCCAs. Based on morphology and immunophenotype, we classified MF-iCCAs into small bile duct (SBD), cholangiolocarcinoma (CLC), ductal plate malformation (DPM) and hepatocellular carcinoma (HCC)-like subtypes. Genetic correlations among the histological subtypes were examined by multi-region tumour sequencing. Vasculatures and other clinicopathological features were compared among tumour groups with various proportions of the histological subtypes in 62 MF-iCCAs. Cases of pure SBD, CLC, DPM and HCC-like subtypes numbered 18 (29%), seven (11.3%), none (0%) and two (3%), respectively; the remaining 35 (56.4%) cases comprised several components. Genetic alterations, isocitrate dehydrogenase (IDH)1/2, KRAS, TP53, polybromo-1 (PBRM1) and BRCA1-associated protein 1 (BAP1), were shared among SBD, CLC, DPM and hepatoid components within a tumour. We uncovered distinct vascularisation mechanisms among SBD, CLC and DPM subtypes with a prominent vessel co-option in CLC tumours. iCCA with a DPM pattern had the highest vascular densities (mean microvascular density,140/mm MF-iCCAs comprise four histological subtypes. Given their sharing some driver gene alterations, indicating they can have a common cell origin, SBD, CLC and DPM subtypes, however, differ in cell differentiation, histology, phenotype or tumour vasculature.

Identifiants

pubmed: 34018212
doi: 10.1111/his.14417
doi:

Substances chimiques

BAP1 protein, human 0
Biomarkers, Tumor 0
Tumor Suppressor Proteins 0
Isocitrate Dehydrogenase EC 1.1.1.41
Ubiquitin Thiolesterase EC 3.4.19.12

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

731-750

Subventions

Organisme : Japanese Government (Monbukagakusho: MEXT) Scholarship (H.C.N)
ID : 153345
Organisme : Ministry of Education, Culture, Sports, Science and Technology of Japan (K.H.) and Health Labor Science Research Grants from Research on Measures for Intractable Diseases, the Intractable Hepato-Biliary Diseases Study Group in Japan
ID : 17H04058

Informations de copyright

© 2021 John Wiley & Sons Ltd.

Références

Nakanuma Y, Sasaki M, Ikeda H et al. Pathology of peripheral intrahepatic cholangiocarcinoma with reference to tumorigenesis. Hepatol. Res. 2008; 38; 325-334.
Nakanuma Y, Curado M-P, Franceschi S et al. Intrahepatic cholangiocarcinoma. In Bosman FT, Carneiro F, Hruban RH, Theise ND eds. WHO classification of tumors of the digestive system; World Health Organization of tumors. Lyon: IARC, 2010; 217-224.
Nakanuma Y, Miyata T, Uchida T. Latest advances in the pathological understanding of cholangiocarcinomas. Exp. Rev. Gastroenterol. Hepatol. 2016; 10; 113-127.
Mavros MN, Economopoulos KP, Alexiou VG, Pawlik TM. Treatment and prognosis for patients with intrahepatic cholangiocarcinoma: systematic review and meta-analysis. JAMA Surg. 2014; 149; 565-574.
Rizvi S, Khan SA, Hallemeier CL, Kelley RK, Gores GJ. Cholangiocarcinoma - evolving concepts and therapeutic strategies. Nat. Rev. Clin. Oncol. 2018; 15; 95-111.
Banales JM, Marin JJG, Lamarca A et al. Cholangiocarcinoma 2020: The next horizon in mechanisms and management. Nat. Rev. Gastroenterol. Hepatol. 2020; 17; 557-588.
Dagogo-Jack I, Shaw AT. Tumour heterogeneity and resistance to cancer therapies. Nat. Rev. Clin. Oncol 2018; 15; 81-94.
Nakanuma Y, Sato Y, Harada K, Sasaki M, Xu J, Ikeda H. Pathological classification of intrahepatic cholangiocarcinoma based on a new concept. World J. Hepatol. 2010; 2; 419-427.
Aishima S, Kuroda Y, Nishihara Y et al. Proposal of progression model for intrahepatic cholangiocarcinoma: clinicopathologic differences between hilar type and peripheral type. Am. J. Surg. Pathol. 2007; 31; 1059-1067.
Komuta M, Govaere O, Vandecaveye V et al. Histological diversity in cholangiocellular carcinoma reflects the different cholangiocyte phenotypes. Hepatology 2012; 55; 1876-1888.
Sigel CS, Drill E, Zhou YI et al. Intrahepatic cholangiocarcinomas have histologically and immunophenotypically distinct small and large duct patterns. Am. J. Surg. Pathol. 2018; 42; 1334-1345.
Liau J-Y, Tsai J-H, Yuan R-H, Chang C-N, Lee H-J, Jeng Y-M. Morphological subclassification of intrahepatic cholangiocarcinoma: etiological, clinicopathological, and molecular features. Mod. Pathol. 2014; 27; 1163-1173.
Hayashi A, Misumi K, Shibahara J et al. Distinct clinicopathologic and genetic features of 2 histologic subtypes of intrahepatic cholangiocarcinoma. Am. J. Surg. Pathol. 2016; 40; 1021-1030.
Akita M, Fujikura K, Ajiki T et al. Dichotomy in intrahepatic cholangiocarcinomas based on histologic similarities to hilar cholangiocarcinomas. Mod. Pathol. 2017; 30; 986-997.
Clements O, Eliahoo J, Kim JU, Taylor-Robinson SD, Khan SA. Risk factors for intrahepatic and extrahepatic cholangiocarcinoma: a systematic review and meta-analysis. J. Hepatol. 2020; 72; 95-103.
Nakanuma Y, Sasaki M, Sato Y, Ren X, Ikeda H, Harada K. Multistep carcinogenesis of perihilar cholangiocarcinoma arising in the intrahepatic large bile ducts. World J. Hepatol. 2009; 1; 35-42.
Roskams TA, Theise ND, Balabaud C et al. Nomenclature of the finer branches of the biliary tree: canals, ductules, and ductular reactions in human livers. Hepatology 2004; 39; 1739-1745.
Kozaka K, Sasaki M, Fujii T et al. A subgroup of intrahepatic cholangiocarcinoma with an infiltrating replacement growth pattern and a resemblance to reactive proliferating bile ductules: ‘bile ductular carcinoma’. Histopathology 2007; 51; 390-400.
Nakanuma Y, Xu J, Harada K et al. Pathological spectrum of intrahepatic cholangiocarcinoma arising in non-biliary chronic advanced liver diseases. Pathol. Int. 2011; 61; 298-305.
Komuta M, Spee B, Borght SV et al. Clinicopathological study on cholangiolocellular carcinoma suggesting hepatic progenitor cell origin. Hepatology 2008; 47; 1544-1556.
Nakamura H, Arai Y, Totoki Y et al. Genomic spectra of biliary tract cancer. Nat. Genet. 2015; 47; 1003-1010.
Jiao Y, Pawlik TM, Anders RA et al. Exome sequencing identifies frequent inactivating mutations in BAP1, ARID1A and PBRM1 in intrahepatic cholangiocarcinomas. Nat. Genet. 2013; 45; 1470-1473.
Jusakul A, Cutcutache I, Yong CH et al. Whole-genome and epigenomic landscapes of etiologically distinct subtypes of cholangiocarcinoma. Cancer Discov. 2017; 7; 1116-1135.
Brunt E, Aishima S, Clavien P-A et al. CHCC-CCA: consensus terminology for primary liver carcinomas with both hepatocytic and cholangiocytic differentation. Hepatology 2018; 68; 113-126.
Nakanuma Y, Sato Y, Ikeda H et al. Intrahepatic cholangiocarcinoma with predominant ‘ductal plate malformation’ pattern: a new subtype. Am. J. Surg. Pathol. 2012; 36; 1629-1635.
Türkoğlu MA, Yamamoto Y, Sugiura T et al. The favorable prognosis after operative resection of hypervascular intrahepatic cholangiocarcinoma: a clinicopathologic and immunohistochemical study. Surgery 2016; 160; 683-690.
Ariizumi S-I, Kotera Y, Takahashi Y et al. Mass-forming intrahepatic cholangiocarcinoma with marked enhancement on arterial-phase computed tomography reflects favorable surgical outcomes. J. Surg. Oncol. 2011; 104; 130-139.
Min JH, Kim YK, Choi S-Y et al. Intrahepatic mass-forming cholangiocarcinoma: arterial enhancement patterns at mri and prognosis. Radiology 2019; 290; 691-699.
Aishima S, Iguchi T, Nishihara Y et al. Decreased intratumoral arteries reflect portal tract destruction and aggressive characteristics in intrahepatic cholangiocarcinoma. Histopathology 2009; 54; 452-461.
Kozaka K, Matsui O, Kobayashi S et al. Dynamic CT findings of cholangiolocellular carcinoma: correlation with angiography-assisted CT and histopathology. Abdom. Radiol. 2017; 42; 861-869.
Haradome H, Unno T, Morisaka H et al. Gadoxetic acid disodium-enhanced mr imaging of cholangiolocellular carcinoma of the liver: imaging characteristics and histopathological correlations. Eur. Radiol. 2017; 27; 4461-4471.
Frentzas S, Simoneau E, Bridgeman VL et al. Vessel co-option mediates resistance to anti-angiogenic therapy in liver metastases. Nat. Med. 2016; 22; 1294-1302.
van Dam P-J, van der Stok EP, Teuwen L-A et al. International consensus, guidelines for scoring the histopathological growth patterns of liver metastasis. Br. J. Cancer 2017; 117; 1427-1441.
Kuczynski EA, Vermeulen PB, Pezzella F, Kerbel RS, Reynolds AR. Vessel co-option in cancer. Nat. Rev. Clin. Oncol. 2019; 16; 469-493.
American Joint Committe on Cancer (AJCC). AJCC cancer staging manual. 8th edn. Chicago: Springer Nature, 2017.
Han Y, Glaser S, Meng F et al. Recent advances in the morphological and functional heterogeneity of the biliary epithelium. Exp. Biol. Med. 2013; 238; 549-565.
Nakanuma Y, Hoso M, Sanzen T, Sasaki M. Microstructure and development of the normal and pathologic biliary tract in humans, including blood supply. Microsc. Res. Tech. 1997; 38; 552-570.
Theise ND, Nakashim O, Park YN, Nakanuma Y. Combined hepatocellular-cholangiocarcinoma. In Bosman FT, Carneiro F, Hruban RH, Theise ND eds. WHO classification of tumors of the digestive system; World Health Organization of tumors. Lyon: IARC, 2010; 225-227.
Steiner PE, Higginson J. Cholangiolocellular carcinoma of the liver. Cancer 1959; 12; 753-759.
Travis WD, Brambilla E, Noguchi M et al. International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society international multidisciplinary classification of lung adenocarcinoma. J. Thorac. Oncol. 2011; 6; 244-285.
Xue R, Chen LU, Zhang C et al. Genomic and transcriptomic profiling of combined hepatocellular and intrahepatic cholangiocarcinoma reveals distinct molecular subtypes. Cancer Cell 2019; 35; 932-947.e938.
Matsui S, Harada K, Miyata N, Okochi H, Miyajima A, Tanaka M. Characterization of peribiliary gland-constituting cells based on differential expression of trophoblast cell surface protein 2 in biliary tract. Am. J. Pathol. 2018; 188; 2059-2073.
Sasaki M, Sato Y, Nakanuma Y. Cholangiolocellular carcinoma with ‘ductal plate malformation’ pattern may be characterized by arid1a genetic alterations. Am. J. Surg. Pathol. 2019; 43; 352-360.
Weidner N, Semple JP, Welch WR, Folkman J. Tumor angiogenesis and metastasis - correlation in invasive breast carcinoma. N. Engl. J. Med. 1991; 324; 1-8.
Nakashima Y, Nakashima O, Hsia CC, Kojiro M, Tabor E. Vascularization of small hepatocellular carcinomas: correlation with differentiation. Liver 1999; 19; 12-18.
Nowak-Sliwinska P, Alitalo K, Allen E et al. Consensus guidelines for the use and interpretation of angiogenesis assays. Angiogenesis 2018; 21; 425-532.
Harada K, Kono N, Tsuneyama K, Nakanuma Y. Cell-kinetic study of proliferating bile ductules in various hepatobiliary diseases. Liver 1998; 18; 277-284.
Desmet VJ. Congenital diseases of intrahepatic bile ducts: variations on the theme ‘ductal plate malformation’. Hepatology 1992; 16; 1069-1083.
Terada T. Human ductal plate and its derivatives express antigens of cholangiocellular, hepatocellular, hepatic stellate/progenitor cell, stem cell, and neuroendocrine lineages, and proliferative antigens. Exp. Biol. Med. 2017; 242; 907-917.
Terada T, Kitamura Y, Nakanuma Y. Normal and abnormal development of the human intrahepatic biliary system: a review. Tohoku J. Exp. Med. 1997; 181; 19-32.
Desmet VJ. Ductal plates in hepatic ductular reactions. Hypothesis and implications. I. Types of ductular reaction reconsidered. Virchows Arch. 2011; 458; 251-259.
Nakano M. Histopathological characteristic of cholangiolocellular carcinoma. Tan To Sui [in Japanese] 2004; 25; 343-349.
Maeno S, Kondo F, Sano K, Takada T, Asano T. Morphometric and immunohistochemical study of cholangiolocellular carcinoma: comparison with non-neoplastic cholangiole, interlobular duct and septal duct. J Hepatobil. Pancreat. Sci. 2012; 19; 289-296.
Terada T. A retrospective case control study of ductal plate malformation-like features in consecutive 200 autopsies. Pathol. Oncol. Res. 2018; 24; 189-194.
Yamada M, Yamamoto Y, Sugiura T et al. Comparison of the clinicopathological features in small bile duct and bile ductular type intrahepatic cholangiocarcinoma. Anticancer Res. 2019; 39; 2121-2127.
Nakanuma Y, Klimstra D, Komuta M, Zen Y. Intrahepatic cholangiocarcinoma. In Paradis V, Fukayama M, Park Y, Schirmacher P eds. Digestive system tumours. Lyon: IARC, 2019; 254-259.
Segal JM, Kent D, Wesche DJ et al. Single cell analysis of human foetal liver captures the transcriptional profile of hepatobiliary hybrid progenitors. Nat. Commun. 2019; 10; 3350.
Balitzer D, Joseph NM, Ferrell L et al. Immunohistochemical and molecular features of cholangiolocellular carcinoma are similar to well-differentiated intrahepatic cholangiocarcinoma. Mod. Pathol. 2019; 32; 1486-1494.
Asayama Y, Aishima S-I, Taguchi K-I et al. Coexpression of neural cell adhesion molecules and BCL-2 in intrahepatic cholangiocarcinoma originated from viral hepatitis: relationship to atypical reactive bile ductule. Pathol. Int. 2002; 52; 300-306.
Turanyi E, Dezso K, Csomor J, Schaff Z, Paku S, Nagy P. Immunohistochemical classification of ductular reactions in human liver. Histopathology 2010; 57; 607-614.
Kondo F, Fukusato T. Pathogenesis of cholangiolocellular carcinoma: possibility of an interlobular duct origin. Intern. Med. 2015; 54; 1685-1694.
Hinohara K, Polyak K. Intratumoral heterogeneity: more than just mutations. Trends Cell. Biol. 2019; 29; 569-579.
Saha SK, Parachoniak CA, Ghanta KS et al. Mutant IDH inhibits HNF-4α to block hepatocyte differentiation and promote biliary cancer. Nature 2014; 513; 110.
Dong L-Q, Shi Y, Ma L-J et al. Spatial and temporal clonal evolution of intrahepatic cholangiocarcinoma. J. Hepatol. 2018; 69; 89-98.
Gillies RJ, Brown JS, Anderson ARA, Gatenby RA. Eco-evolutionary causes and consequences of temporal changes in intratumoral blood flow. Nat. Rev. Cancer 2018; 18; 576-585.
Ariizumi S-I, Kotera Y, Katagiri S et al. Long-term survival of patients with cholangiolocellular carcinoma after curative hepatectomy. Ann. Surg. Oncol. 2014; 21(Suppl 3); S451-S458.
Xu J, Igarashi S, Sasaki M et al. Intrahepatic cholangiocarcinomas in cirrhosis are hypervascular in comparison with those in normal livers. Liver Int. 2012; 32; 1156-1164.
Rhee H, Ko JE, Chung T et al. Transcriptomic and histopathological analysis of cholangiolocellular differentiation trait in intrahepatic cholangiocarcinoma. Liver Int. 2018; 38; 113-124.

Auteurs

Hiep Nguyen Canh (H)

Department of Human Pathology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan.

Kenta Takahashi (K)

Department of Human Pathology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan.

Minako Yamamura (M)

Department of Human Pathology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan.

Zihan Li (Z)

Department of Human Pathology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan.

Yasunori Sato (Y)

Department of Human Pathology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan.

Kaori Yoshimura (K)

Department of Human Pathology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan.

Kazuto Kozaka (K)

Department of Radiology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan.

Minoru Tanaka (M)

Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan.
Laboratory of Stem Cell Regulation, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan.

Yasuni Nakanuma (Y)

Department of Diagnostic Pathology, Fukui Saiseikai Hospital, Fukui, Japan.
Department of Diagnostic Pathology, Shizuoka Cancer Center, Shizuoka, Japan.

Kenichi Harada (K)

Department of Human Pathology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH