Diversity in cell differentiation, histology, phenotype and vasculature of mass-forming intrahepatic cholangiocarcinomas.
Adult
Aged
Aged, 80 and over
Bile Duct Neoplasms
/ genetics
Bile Ducts, Intrahepatic
/ pathology
Biomarkers, Tumor
/ genetics
Carcinoma, Hepatocellular
/ genetics
Cell Differentiation
Cholangiocarcinoma
/ classification
Female
Histocytochemistry
Humans
Isocitrate Dehydrogenase
/ genetics
Liver
/ pathology
Liver Neoplasms
/ genetics
Male
Middle Aged
Phenotype
Prognosis
Retinal Vessels
/ pathology
Tumor Suppressor Proteins
/ genetics
Ubiquitin Thiolesterase
/ genetics
cholangiolocarcinoma
ductal plate malformation
histopathology
vessel co-option
Journal
Histopathology
ISSN: 1365-2559
Titre abrégé: Histopathology
Pays: England
ID NLM: 7704136
Informations de publication
Date de publication:
Nov 2021
Nov 2021
Historique:
revised:
27
04
2021
received:
12
01
2021
accepted:
17
05
2021
pubmed:
22
5
2021
medline:
9
2
2022
entrez:
21
5
2021
Statut:
ppublish
Résumé
Mass-forming intrahepatic cholangiocarcinomas (MF-iCCAs), involving small bile ducts, bile ductules or canals of Hering, remain treated as a single entity. We aimed to examine the diversity in histology, phenotype and tumour vasculature of MF-iCCAs. Based on morphology and immunophenotype, we classified MF-iCCAs into small bile duct (SBD), cholangiolocarcinoma (CLC), ductal plate malformation (DPM) and hepatocellular carcinoma (HCC)-like subtypes. Genetic correlations among the histological subtypes were examined by multi-region tumour sequencing. Vasculatures and other clinicopathological features were compared among tumour groups with various proportions of the histological subtypes in 62 MF-iCCAs. Cases of pure SBD, CLC, DPM and HCC-like subtypes numbered 18 (29%), seven (11.3%), none (0%) and two (3%), respectively; the remaining 35 (56.4%) cases comprised several components. Genetic alterations, isocitrate dehydrogenase (IDH)1/2, KRAS, TP53, polybromo-1 (PBRM1) and BRCA1-associated protein 1 (BAP1), were shared among SBD, CLC, DPM and hepatoid components within a tumour. We uncovered distinct vascularisation mechanisms among SBD, CLC and DPM subtypes with a prominent vessel co-option in CLC tumours. iCCA with a DPM pattern had the highest vascular densities (mean microvascular density,140/mm MF-iCCAs comprise four histological subtypes. Given their sharing some driver gene alterations, indicating they can have a common cell origin, SBD, CLC and DPM subtypes, however, differ in cell differentiation, histology, phenotype or tumour vasculature.
Substances chimiques
BAP1 protein, human
0
Biomarkers, Tumor
0
Tumor Suppressor Proteins
0
Isocitrate Dehydrogenase
EC 1.1.1.41
Ubiquitin Thiolesterase
EC 3.4.19.12
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
731-750Subventions
Organisme : Japanese Government (Monbukagakusho: MEXT) Scholarship (H.C.N)
ID : 153345
Organisme : Ministry of Education, Culture, Sports, Science and Technology of Japan (K.H.) and Health Labor Science Research Grants from Research on Measures for Intractable Diseases, the Intractable Hepato-Biliary Diseases Study Group in Japan
ID : 17H04058
Informations de copyright
© 2021 John Wiley & Sons Ltd.
Références
Nakanuma Y, Sasaki M, Ikeda H et al. Pathology of peripheral intrahepatic cholangiocarcinoma with reference to tumorigenesis. Hepatol. Res. 2008; 38; 325-334.
Nakanuma Y, Curado M-P, Franceschi S et al. Intrahepatic cholangiocarcinoma. In Bosman FT, Carneiro F, Hruban RH, Theise ND eds. WHO classification of tumors of the digestive system; World Health Organization of tumors. Lyon: IARC, 2010; 217-224.
Nakanuma Y, Miyata T, Uchida T. Latest advances in the pathological understanding of cholangiocarcinomas. Exp. Rev. Gastroenterol. Hepatol. 2016; 10; 113-127.
Mavros MN, Economopoulos KP, Alexiou VG, Pawlik TM. Treatment and prognosis for patients with intrahepatic cholangiocarcinoma: systematic review and meta-analysis. JAMA Surg. 2014; 149; 565-574.
Rizvi S, Khan SA, Hallemeier CL, Kelley RK, Gores GJ. Cholangiocarcinoma - evolving concepts and therapeutic strategies. Nat. Rev. Clin. Oncol. 2018; 15; 95-111.
Banales JM, Marin JJG, Lamarca A et al. Cholangiocarcinoma 2020: The next horizon in mechanisms and management. Nat. Rev. Gastroenterol. Hepatol. 2020; 17; 557-588.
Dagogo-Jack I, Shaw AT. Tumour heterogeneity and resistance to cancer therapies. Nat. Rev. Clin. Oncol 2018; 15; 81-94.
Nakanuma Y, Sato Y, Harada K, Sasaki M, Xu J, Ikeda H. Pathological classification of intrahepatic cholangiocarcinoma based on a new concept. World J. Hepatol. 2010; 2; 419-427.
Aishima S, Kuroda Y, Nishihara Y et al. Proposal of progression model for intrahepatic cholangiocarcinoma: clinicopathologic differences between hilar type and peripheral type. Am. J. Surg. Pathol. 2007; 31; 1059-1067.
Komuta M, Govaere O, Vandecaveye V et al. Histological diversity in cholangiocellular carcinoma reflects the different cholangiocyte phenotypes. Hepatology 2012; 55; 1876-1888.
Sigel CS, Drill E, Zhou YI et al. Intrahepatic cholangiocarcinomas have histologically and immunophenotypically distinct small and large duct patterns. Am. J. Surg. Pathol. 2018; 42; 1334-1345.
Liau J-Y, Tsai J-H, Yuan R-H, Chang C-N, Lee H-J, Jeng Y-M. Morphological subclassification of intrahepatic cholangiocarcinoma: etiological, clinicopathological, and molecular features. Mod. Pathol. 2014; 27; 1163-1173.
Hayashi A, Misumi K, Shibahara J et al. Distinct clinicopathologic and genetic features of 2 histologic subtypes of intrahepatic cholangiocarcinoma. Am. J. Surg. Pathol. 2016; 40; 1021-1030.
Akita M, Fujikura K, Ajiki T et al. Dichotomy in intrahepatic cholangiocarcinomas based on histologic similarities to hilar cholangiocarcinomas. Mod. Pathol. 2017; 30; 986-997.
Clements O, Eliahoo J, Kim JU, Taylor-Robinson SD, Khan SA. Risk factors for intrahepatic and extrahepatic cholangiocarcinoma: a systematic review and meta-analysis. J. Hepatol. 2020; 72; 95-103.
Nakanuma Y, Sasaki M, Sato Y, Ren X, Ikeda H, Harada K. Multistep carcinogenesis of perihilar cholangiocarcinoma arising in the intrahepatic large bile ducts. World J. Hepatol. 2009; 1; 35-42.
Roskams TA, Theise ND, Balabaud C et al. Nomenclature of the finer branches of the biliary tree: canals, ductules, and ductular reactions in human livers. Hepatology 2004; 39; 1739-1745.
Kozaka K, Sasaki M, Fujii T et al. A subgroup of intrahepatic cholangiocarcinoma with an infiltrating replacement growth pattern and a resemblance to reactive proliferating bile ductules: ‘bile ductular carcinoma’. Histopathology 2007; 51; 390-400.
Nakanuma Y, Xu J, Harada K et al. Pathological spectrum of intrahepatic cholangiocarcinoma arising in non-biliary chronic advanced liver diseases. Pathol. Int. 2011; 61; 298-305.
Komuta M, Spee B, Borght SV et al. Clinicopathological study on cholangiolocellular carcinoma suggesting hepatic progenitor cell origin. Hepatology 2008; 47; 1544-1556.
Nakamura H, Arai Y, Totoki Y et al. Genomic spectra of biliary tract cancer. Nat. Genet. 2015; 47; 1003-1010.
Jiao Y, Pawlik TM, Anders RA et al. Exome sequencing identifies frequent inactivating mutations in BAP1, ARID1A and PBRM1 in intrahepatic cholangiocarcinomas. Nat. Genet. 2013; 45; 1470-1473.
Jusakul A, Cutcutache I, Yong CH et al. Whole-genome and epigenomic landscapes of etiologically distinct subtypes of cholangiocarcinoma. Cancer Discov. 2017; 7; 1116-1135.
Brunt E, Aishima S, Clavien P-A et al. CHCC-CCA: consensus terminology for primary liver carcinomas with both hepatocytic and cholangiocytic differentation. Hepatology 2018; 68; 113-126.
Nakanuma Y, Sato Y, Ikeda H et al. Intrahepatic cholangiocarcinoma with predominant ‘ductal plate malformation’ pattern: a new subtype. Am. J. Surg. Pathol. 2012; 36; 1629-1635.
Türkoğlu MA, Yamamoto Y, Sugiura T et al. The favorable prognosis after operative resection of hypervascular intrahepatic cholangiocarcinoma: a clinicopathologic and immunohistochemical study. Surgery 2016; 160; 683-690.
Ariizumi S-I, Kotera Y, Takahashi Y et al. Mass-forming intrahepatic cholangiocarcinoma with marked enhancement on arterial-phase computed tomography reflects favorable surgical outcomes. J. Surg. Oncol. 2011; 104; 130-139.
Min JH, Kim YK, Choi S-Y et al. Intrahepatic mass-forming cholangiocarcinoma: arterial enhancement patterns at mri and prognosis. Radiology 2019; 290; 691-699.
Aishima S, Iguchi T, Nishihara Y et al. Decreased intratumoral arteries reflect portal tract destruction and aggressive characteristics in intrahepatic cholangiocarcinoma. Histopathology 2009; 54; 452-461.
Kozaka K, Matsui O, Kobayashi S et al. Dynamic CT findings of cholangiolocellular carcinoma: correlation with angiography-assisted CT and histopathology. Abdom. Radiol. 2017; 42; 861-869.
Haradome H, Unno T, Morisaka H et al. Gadoxetic acid disodium-enhanced mr imaging of cholangiolocellular carcinoma of the liver: imaging characteristics and histopathological correlations. Eur. Radiol. 2017; 27; 4461-4471.
Frentzas S, Simoneau E, Bridgeman VL et al. Vessel co-option mediates resistance to anti-angiogenic therapy in liver metastases. Nat. Med. 2016; 22; 1294-1302.
van Dam P-J, van der Stok EP, Teuwen L-A et al. International consensus, guidelines for scoring the histopathological growth patterns of liver metastasis. Br. J. Cancer 2017; 117; 1427-1441.
Kuczynski EA, Vermeulen PB, Pezzella F, Kerbel RS, Reynolds AR. Vessel co-option in cancer. Nat. Rev. Clin. Oncol. 2019; 16; 469-493.
American Joint Committe on Cancer (AJCC). AJCC cancer staging manual. 8th edn. Chicago: Springer Nature, 2017.
Han Y, Glaser S, Meng F et al. Recent advances in the morphological and functional heterogeneity of the biliary epithelium. Exp. Biol. Med. 2013; 238; 549-565.
Nakanuma Y, Hoso M, Sanzen T, Sasaki M. Microstructure and development of the normal and pathologic biliary tract in humans, including blood supply. Microsc. Res. Tech. 1997; 38; 552-570.
Theise ND, Nakashim O, Park YN, Nakanuma Y. Combined hepatocellular-cholangiocarcinoma. In Bosman FT, Carneiro F, Hruban RH, Theise ND eds. WHO classification of tumors of the digestive system; World Health Organization of tumors. Lyon: IARC, 2010; 225-227.
Steiner PE, Higginson J. Cholangiolocellular carcinoma of the liver. Cancer 1959; 12; 753-759.
Travis WD, Brambilla E, Noguchi M et al. International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society international multidisciplinary classification of lung adenocarcinoma. J. Thorac. Oncol. 2011; 6; 244-285.
Xue R, Chen LU, Zhang C et al. Genomic and transcriptomic profiling of combined hepatocellular and intrahepatic cholangiocarcinoma reveals distinct molecular subtypes. Cancer Cell 2019; 35; 932-947.e938.
Matsui S, Harada K, Miyata N, Okochi H, Miyajima A, Tanaka M. Characterization of peribiliary gland-constituting cells based on differential expression of trophoblast cell surface protein 2 in biliary tract. Am. J. Pathol. 2018; 188; 2059-2073.
Sasaki M, Sato Y, Nakanuma Y. Cholangiolocellular carcinoma with ‘ductal plate malformation’ pattern may be characterized by arid1a genetic alterations. Am. J. Surg. Pathol. 2019; 43; 352-360.
Weidner N, Semple JP, Welch WR, Folkman J. Tumor angiogenesis and metastasis - correlation in invasive breast carcinoma. N. Engl. J. Med. 1991; 324; 1-8.
Nakashima Y, Nakashima O, Hsia CC, Kojiro M, Tabor E. Vascularization of small hepatocellular carcinomas: correlation with differentiation. Liver 1999; 19; 12-18.
Nowak-Sliwinska P, Alitalo K, Allen E et al. Consensus guidelines for the use and interpretation of angiogenesis assays. Angiogenesis 2018; 21; 425-532.
Harada K, Kono N, Tsuneyama K, Nakanuma Y. Cell-kinetic study of proliferating bile ductules in various hepatobiliary diseases. Liver 1998; 18; 277-284.
Desmet VJ. Congenital diseases of intrahepatic bile ducts: variations on the theme ‘ductal plate malformation’. Hepatology 1992; 16; 1069-1083.
Terada T. Human ductal plate and its derivatives express antigens of cholangiocellular, hepatocellular, hepatic stellate/progenitor cell, stem cell, and neuroendocrine lineages, and proliferative antigens. Exp. Biol. Med. 2017; 242; 907-917.
Terada T, Kitamura Y, Nakanuma Y. Normal and abnormal development of the human intrahepatic biliary system: a review. Tohoku J. Exp. Med. 1997; 181; 19-32.
Desmet VJ. Ductal plates in hepatic ductular reactions. Hypothesis and implications. I. Types of ductular reaction reconsidered. Virchows Arch. 2011; 458; 251-259.
Nakano M. Histopathological characteristic of cholangiolocellular carcinoma. Tan To Sui [in Japanese] 2004; 25; 343-349.
Maeno S, Kondo F, Sano K, Takada T, Asano T. Morphometric and immunohistochemical study of cholangiolocellular carcinoma: comparison with non-neoplastic cholangiole, interlobular duct and septal duct. J Hepatobil. Pancreat. Sci. 2012; 19; 289-296.
Terada T. A retrospective case control study of ductal plate malformation-like features in consecutive 200 autopsies. Pathol. Oncol. Res. 2018; 24; 189-194.
Yamada M, Yamamoto Y, Sugiura T et al. Comparison of the clinicopathological features in small bile duct and bile ductular type intrahepatic cholangiocarcinoma. Anticancer Res. 2019; 39; 2121-2127.
Nakanuma Y, Klimstra D, Komuta M, Zen Y. Intrahepatic cholangiocarcinoma. In Paradis V, Fukayama M, Park Y, Schirmacher P eds. Digestive system tumours. Lyon: IARC, 2019; 254-259.
Segal JM, Kent D, Wesche DJ et al. Single cell analysis of human foetal liver captures the transcriptional profile of hepatobiliary hybrid progenitors. Nat. Commun. 2019; 10; 3350.
Balitzer D, Joseph NM, Ferrell L et al. Immunohistochemical and molecular features of cholangiolocellular carcinoma are similar to well-differentiated intrahepatic cholangiocarcinoma. Mod. Pathol. 2019; 32; 1486-1494.
Asayama Y, Aishima S-I, Taguchi K-I et al. Coexpression of neural cell adhesion molecules and BCL-2 in intrahepatic cholangiocarcinoma originated from viral hepatitis: relationship to atypical reactive bile ductule. Pathol. Int. 2002; 52; 300-306.
Turanyi E, Dezso K, Csomor J, Schaff Z, Paku S, Nagy P. Immunohistochemical classification of ductular reactions in human liver. Histopathology 2010; 57; 607-614.
Kondo F, Fukusato T. Pathogenesis of cholangiolocellular carcinoma: possibility of an interlobular duct origin. Intern. Med. 2015; 54; 1685-1694.
Hinohara K, Polyak K. Intratumoral heterogeneity: more than just mutations. Trends Cell. Biol. 2019; 29; 569-579.
Saha SK, Parachoniak CA, Ghanta KS et al. Mutant IDH inhibits HNF-4α to block hepatocyte differentiation and promote biliary cancer. Nature 2014; 513; 110.
Dong L-Q, Shi Y, Ma L-J et al. Spatial and temporal clonal evolution of intrahepatic cholangiocarcinoma. J. Hepatol. 2018; 69; 89-98.
Gillies RJ, Brown JS, Anderson ARA, Gatenby RA. Eco-evolutionary causes and consequences of temporal changes in intratumoral blood flow. Nat. Rev. Cancer 2018; 18; 576-585.
Ariizumi S-I, Kotera Y, Katagiri S et al. Long-term survival of patients with cholangiolocellular carcinoma after curative hepatectomy. Ann. Surg. Oncol. 2014; 21(Suppl 3); S451-S458.
Xu J, Igarashi S, Sasaki M et al. Intrahepatic cholangiocarcinomas in cirrhosis are hypervascular in comparison with those in normal livers. Liver Int. 2012; 32; 1156-1164.
Rhee H, Ko JE, Chung T et al. Transcriptomic and histopathological analysis of cholangiolocellular differentiation trait in intrahepatic cholangiocarcinoma. Liver Int. 2018; 38; 113-124.