Influence of different types of explants in chickpea regeneration using thidiazuron seed-priming.
Axillary meristem
Chickpea
Hypocotyl
Plumular apex
Seed-priming
Thidiazuron
Journal
Journal of plant research
ISSN: 1618-0860
Titre abrégé: J Plant Res
Pays: Japan
ID NLM: 9887853
Informations de publication
Date de publication:
Sep 2021
Sep 2021
Historique:
received:
06
03
2021
accepted:
10
05
2021
pubmed:
16
5
2021
medline:
18
8
2021
entrez:
15
5
2021
Statut:
ppublish
Résumé
A comparative regeneration of three types of explants prepared from axillary meristems, plumular apices and hypocotyls of chickpea (Cicer arietinum) was carried out using four thidiazuron (TDZ) treatment methods. The first and third ones included the short-term 20 μM TDZ pre-treatment for all three explant types followed by non-supplementation or supplementation of TDZ (4 μM) into the shoot induction medium (SIM), while the second and fourth ones lacked TDZ pre-treatment followed by non-addition or addition of 4 μM TDZ in the SIM. Axillary meristem explants produced the best results with seed pre-treatment using 20 μM TDZ without TDZ in SIM and showed the highest rate of regeneration efficiency (71.33 ± 1.5%) after 20 days. Concurrently, plumular apex explants from TDZ-primed seeds was ranked second, exhibiting a regeneration percentage of 54.33 ± 2.3% in SIM without supplementation of TDZ, whereas explants from hypocotyls generated from seeds subjected to any of the TDZ treatments were not regenerated on any SIMs after 20 days.
Identifiants
pubmed: 33991285
doi: 10.1007/s10265-021-01312-5
pii: 10.1007/s10265-021-01312-5
doi:
Substances chimiques
Phenylurea Compounds
0
Thiadiazoles
0
thidiazuron
0091WH7STF
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1149-1154Informations de copyright
© 2021. The Botanical Society of Japan.
Références
Adil M, Ren X, Kang DI, Thi LT, Jeong BR (2018) Effect of explant type and plant growth regulators on callus induction, growth and secondary metabolites production in Cnidium officinale Makino. Mol Biol Rep 45:1919–1927
doi: 10.1007/s11033-018-4340-3
Ahmad N, Faisal M, Anis M (2013) Role of PGR on in vitro shoot propagation in Cyamopsis tetragonoloba L. (Taub.): a drought tolerant grain legume. Rend Fis Acc Lincei 24:7–12
doi: 10.1007/s12210-012-0210-4
Ahmad A, Ahmad N, Anis M, Alatar AA, Abdel-salam EM, Qahtan AA, Faisal M (2021) Gibberellic acid and thidiazuron promote micropropagation of an endangered woody tree (Pterocarpus marsupium Roxb.) using in vitro seedlings. Plant Cell Tissue Organ Cult 144:449–462
doi: 10.1007/s11240-020-01969-1
Bakshi S, Roy NK, Sahoo L (2012) Seedling preconditioning in thidiazuron enhances axillary shoot proliferation and recovery of transgenic cowpea plants. Plant Cell Tissue Organ Cult 110:77–91
doi: 10.1007/s11240-012-0132-y
Barik DP, Naik SK, Mudgal A, Chand PK (2007) Rapid plant regeneration through in vitro axillary shoot proliferation of butterfly pea (Clitoria ternatea L.)—a twinning legume. Vitro Cell Dev Biol Plant 43:144–148
doi: 10.1007/s11627-007-9040-y
Chakrabarty D, Trivedi PK, Shri M, Misra P, Asif MH, Dubey S, Kumar S, Rai A, Tiwari M, Shukla D, Pandey A, Nigam D, Tripathi RD, Tuli R (2010) Differential transcriptional expression following thidiazuron induced callus differentiation developmental shifts in rice. Plant Biol 12:46–59
doi: 10.1111/j.1438-8677.2009.00213.x
Chakraborti D, Sarkar A, Das S (2006) Efficient and rapid in vitro plant regeneration system for Indian cultivars of chickpea (Cicer arietinum L.). Plant Cell Tissue Organ Cult 86:117–123
doi: 10.1007/s11240-005-9072-0
Coram TE, Pang ECK (2006) Expression profiling of chickpea genes differentially regulated during a resistance response to Ascochyta rabiei. Plant Biotechnol J 4:647–666
doi: 10.1111/j.1467-7652.2006.00208.x
Davey JE, van Staden J (1979) Cytokinin activity in Lupinus albus: IV. Distribution in seeds. Plant Physiol 63:873–877
doi: 10.1104/pp.63.5.873
Dey M, Bakshi S, Galiba G, Sahoo L, Panda SK (2012) Development of a genotype independent and transformation amenable regeneration system from shoot apex in rice (Oryza sativa spp. indica) using TDZ. 3 Biotech 2:233–240
doi: 10.1007/s13205-012-0051-y
Faisal M, Ahmad N, Anis M (2005) Shoot multiplication in Rauvolfia tetraphylla L. using thidiazuron. Plant Cell Tissue Organ Cult 80:187–190
doi: 10.1007/s11240-004-0567-x
Ganguly S, Ghosh G, Ghosh S, Purohit A, Chaudhuri RK, Das S, Chakraborti D (2020) Plumular meristem transformation system for chickpea: an efficient method to overcome recalcitrant tissue culture responses. Plant Cell Tissue Organ Cult 142:493–504
doi: 10.1007/s11240-020-01873-8
Gu H, Jia Y, Wang X, Chen Q, Shi S, Ma L, Zhang J, Zhang H, Ma H (2012) Identification and characterization of a LEA family gene CarLEA4 from chickpea (Cicer arietinum L.). Mol Biol Rep 39:3565–3572
doi: 10.1007/s11033-011-1130-6
Gubiš J, Lajchová Z, Faragó J, Jureková Z (2003) Effect of genotype and explant type on shoot regeneration in tomato (Lycopersicon esculentum Mill.) in vitro. Czech J Genet Plant Breed 39:9–14
doi: 10.17221/3715-CJGPB
Guo B, Abbasi BH, Zeb A, Xu LL, Wei YH (2011) Thidiazuron: a multi-dimensional plant growth regulator. Afr J Biotech 10:8984–9000
doi: 10.5897/AJB11.636
Hewelt A, Prinsen E, Schell J, Van Onckelen H, Schmuelling T (1994) Promoter tagging with a promoterless ipt gene leads to cytokinin-induced phenotypic variability in transgenic tobacco plants: implications of gene dosage effects. Plant J 6:879–891
doi: 10.1046/j.1365-313X.1994.6060879.x
Hnatuszko-Konka K, Kowalczyk T, Gerszberg A, Glińska S, Grzegorczyk-Karolak I (2019) Regeneration of Phaseolus vulgaris from epicotyls and hypocotyls via direct organogenesis. Sci Rep 9:6248
doi: 10.1038/s41598-019-42723-8
Javed SB, Alatar AA, Anis M, El-Sheikh AM (2019) In vitro regeneration of coral tree from three different explants using thidiazuron. HortTechnology 29:946–951
doi: 10.21273/HORTTECH04398-19
Jayanand B, Sudarsanam SKK (2003) An efficient protocol for the regeneration of whole plants of chickpea (Cicer arietinum L.) by using axillary meristem explants derived from in vitro germinated seedlings. Vitro Cell Dev Biol Plant 39:171–179
doi: 10.1079/IVP2002387
Jiménez-Díaz RM, Castillo P, del Mar J-G, Landa BB, Navas-Cortés JA (2015) Fusarium wilt of chickpeas: biology, ecology and management. Crop Prot 73:16–27
doi: 10.1016/j.cropro.2015.02.023
Kaushal N, Awasthi R, Gupta K, Gaur PM, Siddique KHM, Nayyar H (2013) Heat-stress-induced reproductive failures in chickpea (Cicer arietinum) are associated with impaired sucrose metabolism in leaves and anthers. Funct Plant Biol 40:1334–1349
doi: 10.1071/FP13082
Kiran G, Kaviraj CP, Jogeswar G, Kishor KVK, Rao S (2005) Direct and high frequency somatic embryogenesis and plant regeneration from hopocotyls of chickpea (Cicer arietinum L.), a grain legume. Curr Sci 89:1012–1018
Kumari P, Singh S, Yadav S, Tran LSP (2018) Pretreatment of seeds with thidiazuron delimits its negative effects on explants and promotes regeneration in chickpea (Cicer arietinum L.). Plant Cell Tissue Organ Cult 133:103–114
doi: 10.1007/s11240-017-1365-6
Letham DS (1994) Cytokinins as phytohormones: sites of biosynthesis, translocation and function of translocated cytokinin. In: Mok DWS, Mok MC (eds) Cytokinins chemistry, activity and function. CRC Press, Boca Raton, pp 57–80
Mik V, Szüčová L, Šmehilová M et al (2011) N9-substituted derivatives of kinetin: effective anti-senescence agents. Phytochemistry 72:821–883
doi: 10.1016/j.phytochem.2011.02.002
Miyawaki K, Tarkowski P, Matsumoto-Kitano M, Kato T, Sato S, Tarkowska D, Tabata S, Sandberg G, Kakimoto T (2006) Roles of Arabidopsis ATP/ADP isopentenyl transferases and tRNA isopentenyl transferases in cytokinin biosynthesis. Proc Natl Acad Sci USA 103:16598–16603
doi: 10.1073/pnas.0603522103
Nishiyama R, Watanabe Y, Fujita Y, Le DT, Kojima M, Werner T, Vankova R, Yamaguchi-Shinozaki K, Shinozaki K, Kakimoto T, Sakakibara H, Schmülling T, Tran LS (2011) Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic acid responses, and abscisic acid biosynthesis. Plant Cell 23:2169–02183
doi: 10.1105/tpc.111.087395
Nisler J (2018) TDZ: mode of action, use and potential in agriculture. In: Ahmad N, Faisal M (eds) Thidiazuron: from urea derivative to plant growth regulator. Springer, Singapore, pp 37–59
doi: 10.1007/978-981-10-8004-3_2
Nowakowska K, Pacholczak A, Tepper W (2019) The effect of selected growth regulators and culture media on regeneration of Daphne mezereum L. ‘Alba.’ Rend Fis Acc Lincei 30:197–205
doi: 10.1007/s12210-019-00777-w
Ochatt S, Conreux C, Smýkalová I, Smýkal P, Mikić A (2016) Developing biotechnology tools for ‘beautiful’ vavilovia (Vavilovia formosa), a legume crop wild relative with taxonomic and agronomic potential. Plant Cell Tissue Organ Cult 127:637–648
doi: 10.1007/s11240-016-1133-z
Otroshy M, Khalili Z, Ebrahimi MA, Nekoui MK, Moradi K (2013) Effect of growth regulators and explant on plant regeneration of Solanum lycopersicum L. var. cerasiforme. Russ Agricult Sci 39:226–235
doi: 10.3103/S1068367413030178
Sharma VK, Hansch R, Mendel RR, Schulze J (2005) Influence of picloram and thidiazuron on high frequency plant regeneration in elite cultivars of wheat with long term retention of morphogenecity using meristematic shoot segments. Plant Breed 124:242–246
doi: 10.1111/j.1439-0523.2005.01095.x
Siddique I, Anis M (2007) In vitro shoot multiplication and plantlet regeneration from nodal explants of Cassia angustifolia (Vahl.)—a medicinal plant. Acta Physiol Plant 29:333–338
doi: 10.1007/s11738-007-0029-2
Singh V, Chauhan NS, Singh M, Idris A, Madanala R, Pande V, Mohanty CS (2014) Establishment of an efficient and rapid method of multiple shoot regeneration and a comparative phenolics profile in in vitro and greenhouse-grown plants of Psophocarpus tetragonolobus (L.) DC. Plant Signal Behav 9:e970443
doi: 10.4161/15592316.2014.970443
Synkova H, Van Loren K, Pospisilova J, Valcke R (1999) Photosynthesis of transgenic pssu-ipt tobacco. J Plant Physiol 155:173–182
doi: 10.1016/S0176-1617(99)80004-2
Thu NBA, Hoang XLT, Truc MT, Sulieman S, Thao NP, Tran LSP (2017) Cytokinin signaling in plant response to abiotic stresses. In: Pandey G (ed) Mechanism of plant hormone signaling under stress, vol 1. Wiley, pp 71–100
doi: 10.1002/9781118889022.ch4
Visarada KBRS, Sailaja M, Sarma NP (2002) Effect of callus induction media on morphology of embryogenic calli in rice genotypes. Biol Plant 45:495–502
doi: 10.1023/A:1022323221513
Wang X, Liu Y, Jia Y, Gu H, Ma H, Yu T, Zhang H, Chen Q, Ma L, Gu A, Zhang J, Shi S, Ma H (2012) Transcriptional responses to drought stress in root and leaf of chickpea seedling. Mol Biol Rep 39:8147–8158
doi: 10.1007/s11033-012-1662-4
Werner T, Motyka V, Strnad M, Schmülling T (2001) Regulation of plant growth by cytokinin. Proc Natl Acad Sci USA 98:10487–10492
doi: 10.1073/pnas.171304098