CRISPAltRations: a validated cloud-based approach for interrogation of double-strand break repair mediated by CRISPR genome editing.

CRISPR Cas12a Cas9 DNA repair amplicon sequencing bioinformatics genome editing next-generation sequencing software non-homologous end joining off-target analysis

Journal

Molecular therapy. Methods & clinical development
ISSN: 2329-0501
Titre abrégé: Mol Ther Methods Clin Dev
Pays: United States
ID NLM: 101624857

Informations de publication

Date de publication:
11 Jun 2021
Historique:
received: 20 11 2020
accepted: 29 03 2021
entrez: 13 5 2021
pubmed: 14 5 2021
medline: 14 5 2021
Statut: epublish

Résumé

CRISPR systems enable targeted genome editing in a wide variety of organisms by introducing single- or double-strand DNA breaks, which are repaired using endogenous molecular pathways. Characterization of on- and off-target editing events from CRISPR proteins can be evaluated using targeted genome resequencing. We characterized DNA repair fingerprints that result from non-homologous end joining (NHEJ) after double-stranded breaks (DSBs) were introduced by Cas9 or Cas12a for >500 paired treatment/control experiments. We found that building biological understanding of the repair into a novel analysis tool (CRISPAltRations) improved the quality of the results. We validated our software using simulated, targeted amplicon sequencing data (11 guide RNAs [gRNAs] and 603 on- and off-target locations) and demonstrated that CRISPAltRations outperforms other publicly available software tools in accurately annotating CRISPR-associated indels and homology-directed repair (HDR) events. We enable non-bioinformaticians to use CRISPAltRations by developing a web-accessible, cloud-hosted deployment, which allows rapid batch processing of samples in a graphical user interface (GUI) and complies with HIPAA security standards. By ensuring that our software is thoroughly tested, version controlled, and supported with a user interface (UI), we enable resequencing analysis of CRISPR genome editing experiments to researchers no matter their skill in bioinformatics.

Identifiants

pubmed: 33981780
doi: 10.1016/j.omtm.2021.03.024
pii: S2329-0501(21)00064-4
pmc: PMC8082044
doi:

Types de publication

Journal Article

Langues

eng

Pagination

478-491

Informations de copyright

© 2021 Integrated DNA Technologies, Inc.

Déclaration de conflit d'intérêts

G.K., A.M.J., M.S.M., R.T., G.R.R., N.R., H.L., L.T., M.S., Y.W., and M.A.B. are employees or paid contractors/consultants of Integrated DNA Technologies (IDT), which sells reagents used or similar to those used in this manuscript. M.M., K.F., and R.N. are employees of Illumina Inc., which provides a productized cloud-computing platform for doing NGS analysis.

Références

Science. 2019 Apr 19;364(6437):286-289
pubmed: 31000663
Sci Rep. 2019 Mar 14;9(1):4437
pubmed: 30872606
Mol Cell. 2016 Aug 18;63(4):633-646
pubmed: 27499295
Nucleic Acid Ther. 2019 Aug;29(4):167-174
pubmed: 31107154
J Mol Diagn. 2017 Jan;19(1):4-23
pubmed: 27993330
Nucleic Acids Res. 2019 Sep 5;47(15):e87
pubmed: 31127310
Proc Natl Acad Sci U S A. 2018 Feb 27;115(9):E2040-E2047
pubmed: 29440496
PLoS Biol. 2019 Jun 20;17(6):e3000333
pubmed: 31220077
Nat Biotechnol. 2019 Aug;37(8):945-952
pubmed: 31359006
Annu Rev Biochem. 2010;79:181-211
pubmed: 20192759
Nat Biotechnol. 2016 Aug;34(8):863-8
pubmed: 27272384
J Am Chem Soc. 2018 Mar 14;140(10):3743-3750
pubmed: 29461055
Nat Biotechnol. 2016 Jul 12;34(7):701-2
pubmed: 27404876
Nat Biotechnol. 2019 Mar;37(3):276-282
pubmed: 30742127
Bioinformatics. 2018 Oct 15;34(20):3600
pubmed: 29788404
Bioinformatics. 2009 Jun 1;25(11):1422-3
pubmed: 19304878
Methods. 2017 May 15;121-122:16-28
pubmed: 28351759
Cell. 2015 Oct 22;163(3):759-71
pubmed: 26422227
Methods Mol Biol. 2019;1961:29-44
pubmed: 30912038
Bioinformatics. 2015 May 1;31(9):1469-71
pubmed: 25524895
Nat Biotechnol. 2015 Feb;33(2):187-197
pubmed: 25513782
Nat Biotechnol. 2018 Nov 27;:
pubmed: 30480667
Mol Ther Methods Clin Dev. 2020 May 04;17:1097-1107
pubmed: 32478125
Mol Cell. 2018 Sep 6;71(5):816-824.e3
pubmed: 30078724
Nat Med. 2018 Aug;24(8):1216-1224
pubmed: 30082871
Trends Genet. 2019 Sep;35(9):632-644
pubmed: 31296341
N Engl J Med. 2019 Mar 7;380(10):947-959
pubmed: 30855744
Nat Commun. 2019 Sep 30;10(1):4439
pubmed: 31570731
Bioinformatics. 2018 Sep 1;34(17):i884-i890
pubmed: 30423086
Nat Biotechnol. 2018 Sep;36(8):765-771
pubmed: 30010673
Mol Cell. 2020 May 21;78(4):794-800.e8
pubmed: 32187529
Mol Ther Nucleic Acids. 2014 Dec 02;3:e214
pubmed: 25462530
Nat Methods. 2016 Mar 30;13(4):295-9
pubmed: 27027586
Bioinformatics. 2012 Feb 15;28(4):593-4
pubmed: 22199392
Nature. 2018 Nov;563(7733):646-651
pubmed: 30405244
J Mol Biol. 1970 Mar;48(3):443-53
pubmed: 5420325
Nat Biotechnol. 2020 Feb;38(2):163-164
pubmed: 32034391
PLoS One. 2018 Apr 9;13(4):e0195272
pubmed: 29630678
Nat Genet. 1995 Feb;9(2):177-83
pubmed: 7719346
Bioinformatics. 2011 Nov 1;27(21):2957-63
pubmed: 21903629
Mol Cell. 2020 Mar 5;77(5):1080-1091.e8
pubmed: 31862156
Nat Methods. 2017 Jun;14(6):607-614
pubmed: 28459458
Nat Biotechnol. 2020 Nov;38(11):1317-1327
pubmed: 32541958
Annu Rev Biochem. 2014;83:409-39
pubmed: 24606144
Nature. 2019 Dec;576(7785):149-157
pubmed: 31634902
Genome Res. 2019 May;29(5):843-847
pubmed: 30850374
G3 (Bethesda). 2015 Jan 07;5(3):407-15
pubmed: 25566793
Nat Biotechnol. 2019 May;37(5):555-560
pubmed: 30858580
Nat Biotechnol. 2019 Sep;37(9):1034-1037
pubmed: 31359007
Nat Biotechnol. 2019 Mar;37(3):224-226
pubmed: 30809026
Nature. 2016 Apr 20;533(7603):420-4
pubmed: 27096365
Nat Biotechnol. 2016 Jul 12;34(7):695-7
pubmed: 27404874
Bioinformatics. 2011 Jun 15;27(12):1691-2
pubmed: 21493652
Nucleic Acids Res. 2017 May 19;45(9):e74
pubmed: 28115632
Nucleic Acids Res. 2020 Jun 4;48(10):5527-5539
pubmed: 32282899
Mol Ecol Resour. 2011 Sep;11(5):759-69
pubmed: 21592312
Genes Cells. 2013 Jun;18(6):450-8
pubmed: 23573916
Sci Rep. 2015 Oct 26;5:15587
pubmed: 26498861
Sci Rep. 2016 Apr 20;6:24607
pubmed: 27094764
Bioinformatics. 2018 Sep 15;34(18):3094-3100
pubmed: 29750242
Bioinformatics. 2010 Mar 15;26(6):841-2
pubmed: 20110278
Nucleic Acids Res. 2016 Jun 20;44(11):e108
pubmed: 27060149
Nucleic Acids Res. 2019 Aug 22;47(14):7402-7417
pubmed: 31127293
ACS Synth Biol. 2016 Dec 16;5(12):1383-1388
pubmed: 27294364
Science. 2020 Feb 28;367(6481):
pubmed: 32029687
Sci Rep. 2018 Jan 17;8(1):888
pubmed: 29343825

Auteurs

Gavin Kurgan (G)

Integrated DNA Technologies, Coralville, IA 52241, USA.

Rolf Turk (R)

Integrated DNA Technologies, Coralville, IA 52241, USA.

Heng Li (H)

Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA 02215.

Nathan Roberts (N)

Integrated DNA Technologies, Coralville, IA 52241, USA.

Garrett R Rettig (GR)

Integrated DNA Technologies, Coralville, IA 52241, USA.

Ashley M Jacobi (AM)

Integrated DNA Technologies, Coralville, IA 52241, USA.

Lauren Tso (L)

Integrated DNA Technologies, Coralville, IA 52241, USA.

Morgan Sturgeon (M)

Integrated DNA Technologies, Coralville, IA 52241, USA.

Massimo Mertens (M)

Illumina, Inc., San Diego, CA 92122.

Roel Noten (R)

Illumina, Inc., San Diego, CA 92122.

Kurt Florus (K)

Illumina, Inc., San Diego, CA 92122.

Mark A Behlke (MA)

Integrated DNA Technologies, Coralville, IA 52241, USA.

Yu Wang (Y)

Integrated DNA Technologies, Coralville, IA 52241, USA.

Matthew S McNeill (MS)

Integrated DNA Technologies, Coralville, IA 52241, USA.

Classifications MeSH