A Systematic Review of Discrete Choice Experiments in Oncology Treatments.
Journal
The patient
ISSN: 1178-1661
Titre abrégé: Patient
Pays: New Zealand
ID NLM: 101309314
Informations de publication
Date de publication:
11 2021
11 2021
Historique:
accepted:
17
04
2021
pubmed:
6
5
2021
medline:
8
1
2022
entrez:
5
5
2021
Statut:
ppublish
Résumé
As the number and type of cancer treatments available rises and patients live with the consequences of their disease and treatments for longer, understanding preferences for cancer care can help inform decisions about optimal treatment development, access, and care provision. Discrete choice experiments (DCEs) are commonly used as a tool to elicit stakeholder preferences; however, their implementation in oncology may be challenging if burdensome trade-offs (e.g. length of life versus quality of life) are involved and/or target populations are small. The aim of this review was to characterise DCEs relating to cancer treatments that were conducted between 1990 and March 2020. EMBASE, MEDLINE, and the Cochrane Database of Systematic Reviews were searched for relevant studies. Studies were included if they implemented a DCE and reported outcomes of interest (i.e. quantitative outputs on participants' preferences for cancer treatments), but were excluded if they were not focused on pharmacological, radiological or surgical treatments (e.g. cancer screening or counselling services), were non-English, or were a secondary analysis of an included study. Analysis followed a narrative synthesis, and quantitative data were summarised using descriptive statistics, including rankings of attribute importance. Seventy-nine studies were included in the review. The number of published DCEs relating to oncology grew over the review period. Studies were conducted in a range of indications (n = 19), most commonly breast (n =10, 13%) and prostate (n = 9, 11%) cancer, and most studies elicited preferences of patients (n = 59, 75%). Across reviewed studies, survival attributes were commonly ranked as most important, with overall survival (OS) and progression-free survival (PFS) ranked most important in 58% and 28% of models, respectively. Preferences varied between stakeholder groups, with patients and clinicians placing greater importance on survival outcomes, and general population samples valuing health-related quality of life (HRQoL). Despite the emphasis of guidelines on the importance of using qualitative research to inform attribute selection and DCE designs, reporting on instrument development was mixed. No formal assessment of bias was conducted, with the scope of the paper instead providing a descriptive characterisation. The review only included DCEs relating to cancer treatments, and no insight is provided into other health technologies such as cancer screening. Only DCEs were included. Although there was variation in attribute importance between responder types, survival attributes were consistently ranked as important by both patients and clinicians. Observed challenges included the risk of attribute dominance for survival outcomes, limited sample sizes in some indications, and a lack of reporting about instrument development processes. PROSPERO 2020 CRD42020184232.
Sections du résumé
BACKGROUND
As the number and type of cancer treatments available rises and patients live with the consequences of their disease and treatments for longer, understanding preferences for cancer care can help inform decisions about optimal treatment development, access, and care provision. Discrete choice experiments (DCEs) are commonly used as a tool to elicit stakeholder preferences; however, their implementation in oncology may be challenging if burdensome trade-offs (e.g. length of life versus quality of life) are involved and/or target populations are small.
OBJECTIVES
The aim of this review was to characterise DCEs relating to cancer treatments that were conducted between 1990 and March 2020.
DATA SOURCES
EMBASE, MEDLINE, and the Cochrane Database of Systematic Reviews were searched for relevant studies.
STUDY ELIGIBILITY CRITERIA
Studies were included if they implemented a DCE and reported outcomes of interest (i.e. quantitative outputs on participants' preferences for cancer treatments), but were excluded if they were not focused on pharmacological, radiological or surgical treatments (e.g. cancer screening or counselling services), were non-English, or were a secondary analysis of an included study.
ANALYSIS METHODS
Analysis followed a narrative synthesis, and quantitative data were summarised using descriptive statistics, including rankings of attribute importance.
RESULT
Seventy-nine studies were included in the review. The number of published DCEs relating to oncology grew over the review period. Studies were conducted in a range of indications (n = 19), most commonly breast (n =10, 13%) and prostate (n = 9, 11%) cancer, and most studies elicited preferences of patients (n = 59, 75%). Across reviewed studies, survival attributes were commonly ranked as most important, with overall survival (OS) and progression-free survival (PFS) ranked most important in 58% and 28% of models, respectively. Preferences varied between stakeholder groups, with patients and clinicians placing greater importance on survival outcomes, and general population samples valuing health-related quality of life (HRQoL). Despite the emphasis of guidelines on the importance of using qualitative research to inform attribute selection and DCE designs, reporting on instrument development was mixed.
LIMITATIONS
No formal assessment of bias was conducted, with the scope of the paper instead providing a descriptive characterisation. The review only included DCEs relating to cancer treatments, and no insight is provided into other health technologies such as cancer screening. Only DCEs were included.
CONCLUSIONS AND IMPLICATIONS
Although there was variation in attribute importance between responder types, survival attributes were consistently ranked as important by both patients and clinicians. Observed challenges included the risk of attribute dominance for survival outcomes, limited sample sizes in some indications, and a lack of reporting about instrument development processes.
PROTOCOL REGISTRATION
PROSPERO 2020 CRD42020184232.
Identifiants
pubmed: 33950476
doi: 10.1007/s40271-021-00520-4
pii: 10.1007/s40271-021-00520-4
doi:
Types de publication
Journal Article
Systematic Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
775-790Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer Nature Switzerland AG.
Références
Global Burden of Disease Cancer Collaboration, Fitzmaurice C, Abate D, Abbasi N, Abbastabar H, Abd-Allah F, et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2017: a systematic analysis for the global burden of disease study. JAMA Oncol. 2019;5(12):1749–68. https://doi.org/10.1001/jamaoncol.2019.2996 .
doi: 10.1001/jamaoncol.2019.2996
pmcid: 6777271
Harris RE. Epidemiology of chronic disease: global perspectives. Jones & Bartlett Learning; 2019.
Allemani C, Matsuda T, Di Carlo V, Harewood R, Matz M, Niksic M, et al. Global surveillance of trends in cancer survival 2000–14 (concord-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet. 2018;391(10125):1023–75. https://doi.org/10.1016/S0140-6736(17)33326-3 .
doi: 10.1016/S0140-6736(17)33326-3
pubmed: 29395269
pmcid: 5879496
National Cancer Institute. Cancer trends progress report. 2020. https://progressreport.cancer.gov . Accessed 6 Aug 2020.
Salas-Vega S, Iliopoulos O, Mossialos E. Assessment of overall survival, quality of life, and safety benefits associated with new cancer medicines. JAMA Oncol. 2017;3(3):382–90. https://doi.org/10.1001/jamaoncol.2016.4166 .
doi: 10.1001/jamaoncol.2016.4166
pubmed: 28033447
Haslam A, Herrera-Perez D, Gill J, Prasad V. Patient experience captured by quality-of-life measurement in oncology clinical trials. JAMA Netw Open. 2020;3(3):e200363. https://doi.org/10.1001/jamanetworkopen.2020.0363 .
doi: 10.1001/jamanetworkopen.2020.0363
pubmed: 32129865
pmcid: 7057133
Mierzynska J, Piccinin C, Pe M, Martinelli F, Gotay C, Coens C, et al. Prognostic value of patient-reported outcomes from international randomised clinical trials on cancer: a systematic review. Lancet Oncol. 2019;20(12):e685–98. https://doi.org/10.1016/S1470-2045(19)30656-4 .
doi: 10.1016/S1470-2045(19)30656-4
pubmed: 31797795
Pharma Intelligence. Pharmaprojects, a drug development database. Informa PLC. 2020. https://pharmaintelligence.informa.com/products-and-services/data-and-analysis/pharmaprojects . Accessed 30 Nov 2020.
Bouvy JC, Cowie L, Lovett R, Morrison D, Livingstone H, Crabb N. Use of patient preference studies in hta decision making: a nice perspective. Patient. 2020;13(2):145–9. https://doi.org/10.1007/s40271-019-00408-4 .
doi: 10.1007/s40271-019-00408-4
pubmed: 31942698
US FDA. Patient preference information—voluntary submission, review in premarket approval applications, humanitarian device exemption applications, and de novo requests, and inclusion in decision summaries and device labeling. 2016. https://www.fda.gov/media/92593/download . Accessed 6 Aug 2020.
Marsh K, van Til JA, Molsen-David E, Juhnke C, Hawken N, Oehrlein EM, et al. Health preference research in Europe: a review of its use in marketing authorization, reimbursement, and pricing decisions-report of the ISPOR stated preference research special interest group. Value Health. 2020;23(7):831–41. https://doi.org/10.1016/j.jval.2019.11.009 .
doi: 10.1016/j.jval.2019.11.009
pubmed: 32762984
Postmus D, Mavris M, Hillege HL, Salmonson T, Ryll B, Plate A, et al. Incorporating patient preferences into drug development and regulatory decision making: results from a quantitative pilot study with cancer patients, carers, and regulators. Clin Pharmacol Ther. 2016;99(5):548–54. https://doi.org/10.1002/cpt.332 .
doi: 10.1002/cpt.332
pubmed: 26715217
Mockford C, Staniszewska S, Griffiths F, Herron-Marx S. The impact of patient and public involvement on UK NHS health care: a systematic review. Int J Qual Health Care. 2012;24(1):28–38. https://doi.org/10.1093/intqhc/mzr066 .
doi: 10.1093/intqhc/mzr066
pubmed: 22109631
Johnson FR, Zhou M. Patient preferences in regulatory benefit-risk assessments: a US perspective. Value Health. 2016;19(6):741–5. https://doi.org/10.1016/j.jval.2016.04.008 .
doi: 10.1016/j.jval.2016.04.008
pubmed: 27712700
Vass CM, Payne K. Using discrete choice experiments to inform the benefit-risk assessment of medicines: are we ready yet? Pharmacoeconomics. 2017;35(9):859–66. https://doi.org/10.1007/s40273-017-0518-0 .
doi: 10.1007/s40273-017-0518-0
pubmed: 28536955
pmcid: 5563347
Huls SPI, Whichello CL, van Exel J, Uyl-de Groot CA, de Bekker-Grob EW. What is next for patient preferences in health technology assessment? A systematic review of the challenges. Value Health. 2019;22(11):1318–28. https://doi.org/10.1016/j.jval.2019.04.1930 .
doi: 10.1016/j.jval.2019.04.1930
pubmed: 31708070
American Diabetes Association. Standards of medical care in diabetes—2020 abridged for primary care providers. Clin Diabetes. 2020;38(1):10.
doi: 10.2337/cd20-as01
Global Initiative for Asthma (GINA). Global strategy for asthma management and prevention (2020 update). 2020. https://ginasthma.org/wp-content/uploads/2020/06/GINA-2020-report_20_06_04-1-wms.pdf . Accessed Mar 2021.
Global Initiative for Chronic Obstructive Lung Disease Inc. Pocket guide to COPD: Diagnosis, management, and prevention. 2020. Available at: https://goldcopd.org/wp-content/uploads/2020/03/GOLD-2020-POCKET-GUIDE-ver1.0_FINAL-WMV.pdf . Accessed Mar 2021.
Mahieu PA, Andersson H, Beaumais O, dit Sourd RC, Hess S, Wolff F. Stated preferences: a unique database composed of 1657 recent published articles in journals related to agriculture, environment or health. Rev Agric Food Environ Stud. 2017;98(3):201–20.
doi: 10.1007/s41130-017-0053-6
de Bekker-Grob EW, Ryan M, Gerard K. Discrete choice experiments in health economics: a review of the literature. Health Econ. 2012;21(2):145–72. https://doi.org/10.1002/hec.1697 .
doi: 10.1002/hec.1697
pubmed: 22223558
Clark MD, Determann D, Petrou S, Moro D, de Bekker-Grob EW. Discrete choice experiments in health economics: a review of the literature. Pharmacoeconomics. 2014;32(9):883–902. https://doi.org/10.1007/s40273-014-0170-x .
doi: 10.1007/s40273-014-0170-x
pubmed: 25005924
Ryan M, Gerard K. Using discrete choice experiments to value health care programmes: current practice and future research reflections. Appl Health Econ Health Policy. 2003;2(1):55–64.
pubmed: 14619274
Soekhai V, de Bekker-Grob EW, Ellis AR, Vass CM. Discrete choice experiments in health economics: past, present and future. Pharmacoeconomics. 2019;37(2):201–26. https://doi.org/10.1007/s40273-018-0734-2 .
doi: 10.1007/s40273-018-0734-2
pubmed: 30392040
Shrestha A, Martin C, Burton M, Walters S, Collins K, Wyld L. Quality of life versus length of life considerations in cancer patients: a systematic literature review. Psychooncology. 2019;28(7):1367–80. https://doi.org/10.1002/pon.5054 .
doi: 10.1002/pon.5054
pubmed: 30838697
pmcid: 6619389
Laryionava K, Sklenarova H, Heussner P, Haun MW, Stiggelbout AM, Hartmann M, et al. Cancer patients’ preferences for quantity or quality of life: German translation and validation of the quality and quantity questionnaire. Oncol Res Treat. 2014;37(9):472–8. https://doi.org/10.1159/000366250 .
doi: 10.1159/000366250
pubmed: 25231687
Guerra RL, Castaneda L, de Albuquerque RCR, Ferreira CBT, Correa FM, Fernandes RRA, et al. Patient preferences for breast cancer treatment interventions: a systematic review of discrete choice experiments. Patient. 2019;12(6):559–69. https://doi.org/10.1007/s40271-019-00375-w .
doi: 10.1007/s40271-019-00375-w
pubmed: 31321706
Mansfield C, Tangka FK, Ekwueme DU, Smith JL, Guy GP Jr, Li C, et al. Stated preference for cancer screening: a systematic review of the literature, 1990–2013. Prev Chronic Dis. 2016;13:E27. https://doi.org/10.5888/pcd13.150433 .
doi: 10.5888/pcd13.150433
pubmed: 26916898
pmcid: 4768876
Damm K, Vogel A, Prenzler A. Preferences of colorectal cancer patients for treatment and decision-making: a systematic literature review. Eur J Cancer Care (Engl). 2014;23(6):762–72. https://doi.org/10.1111/ecc.12207 .
doi: 10.1111/ecc.12207
Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the prisma statement. PLoS Med. 2009;6(7):e1000097. https://doi.org/10.1371/journal.pmed.1000097 .
doi: 10.1371/journal.pmed.1000097
pubmed: 19621072
pmcid: 2707599
Collacott H, Heidenreich S, Brooks A, Soekhai V, Brookes E, Thomas C et al. Discrete choice experiments in oncology: a systematic review. PROSPERO 2020 CRD42020184232. 2020. https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020184232 . Accessed 30 Nov 2020.
Coast J, Al-Janabi H, Sutton EJ, Horrocks SA, Vosper AJ, Swancutt DR, et al. Using qualitative methods for attribute development for discrete choice experiments: issues and recommendations. Health Econ. 2012;21(6):730–41. https://doi.org/10.1002/hec.1739 .
doi: 10.1002/hec.1739
pubmed: 21557381
Vass C, Rigby D, Payne K. The role of qualitative research methods in discrete choice experiments. Med Decis Mak. 2017;37(3):298–313. https://doi.org/10.1177/0272989X16683934 .
doi: 10.1177/0272989X16683934
Coast J, Horrocks S. Developing attributes and levels for discrete choice experiments using qualitative methods. J Health Serv Res Policy. 2007;12(1):25–30. https://doi.org/10.1258/135581907779497602 .
doi: 10.1258/135581907779497602
pubmed: 17244394
Kløjgaard ME, Bech M, Søgaard R. Designing a stated choice experiment: the value of a qualitative process. J Choice Model. 2012;5(2):1–18.
doi: 10.1016/S1755-5345(13)70050-2
Bolt T, Mahlich J, Nakamura Y, Nakayama M. Hematologists’ preferences for first-line therapy characteristics for multiple myeloma in Japan: attribute rating and discrete choice experiment. Clin Ther. 2018;40(2):296-308.e2. https://doi.org/10.1016/j.clinthera.2017.12.012 .
doi: 10.1016/j.clinthera.2017.12.012
pubmed: 29358004
Boque C, Abad MR, Agustin MJ, Garcia-Goni M, Moreno C, Gabas-Rivera C, et al. Treatment decision-making in chronic lymphocytic leukaemia: key factors for healthcare professionals. PRELIC study. J Geriatr Oncol. 2020;11(1):24–30. https://doi.org/10.1016/j.jgo.2019.03.010 .
doi: 10.1016/j.jgo.2019.03.010
pubmed: 30954406
Bridges JF, la Cruz M, Pavilack M, Flood E, Janssen EM, Chehab N, et al. Patient preferences for attributes of tyrosine kinase inhibitor treatments for EGFR mutation-positive non-small-cell lung cancer. Future Oncol. 2019;15(34):3895–907. https://doi.org/10.2217/fon-2019-0396 .
doi: 10.2217/fon-2019-0396
pubmed: 31621403
Brockelmann PJ, McMullen S, Wilson JB, Mueller K, Goring S, Stamatoullas A, et al. Patient and physician preferences for first-line treatment of classical hodgkin lymphoma in Germany, France and the UK. Br J Haematol. 2019;184(2):202–14. https://doi.org/10.1111/bjh.15566 .
doi: 10.1111/bjh.15566
pubmed: 30239982
De Abreu LR, Haas M, Hall J, Parish K, Stuart D, Viney R. My mind is made up: cancer concern and women’s preferences for contralateral prophylactic mastectomy. Eur J Cancer Care (Engl). 2019;28(4):e13058. https://doi.org/10.1111/ecc.13058 .
doi: 10.1111/ecc.13058
de Freitas HM, Ito T, Hadi M, Al-Jassar G, Henry-Szatkowski M, Nafees B, et al. Patient preferences for metastatic hormone-sensitive prostate cancer treatments: a discrete choice experiment among men in three European countries. Adv Ther. 2019;36(2):318–32. https://doi.org/10.1007/s12325-018-0861-3 .
doi: 10.1007/s12325-018-0861-3
pubmed: 30617763
pmcid: 6824341
Gonzalez JM, Doan J, Gebben DJ, Boeri M, Fishman M. Comparing the relative importance of attributes of metastatic renal cell carcinoma treatments to patients and physicians in the United States: a discrete-choice experiment. Pharmacoeconomics. 2018;36(8):973–86. https://doi.org/10.1007/s40273-018-0640-7 .
doi: 10.1007/s40273-018-0640-7
pubmed: 29869777
Havrilesky LJ, Lim S, Ehrisman JA, Lorenzo A, Alvarez Secord A, Yang JC, et al. Patient preferences for maintenance parp inhibitor therapy in ovarian cancer treatment. Gynecol Oncol. 2020;156(3):561–7. https://doi.org/10.1016/j.ygyno.2020.01.026 .
doi: 10.1016/j.ygyno.2020.01.026
pubmed: 31982178
Havrilesky LJ, Yang JC, Lee PS, Secord AA, Ehrisman JA, Davidson B, et al. Patient preferences for attributes of primary surgical debulking versus neoadjuvant chemotherapy for treatment of newly diagnosed ovarian cancer. Cancer. 2019;125(24):4399–406. https://doi.org/10.1002/cncr.32447 .
doi: 10.1002/cncr.32447
pubmed: 31454432
Ivanova J, Hess LM, Garcia-Horton V, Graham S, Liu X, Zhu Y, et al. Patient and oncologist preferences for the treatment of adults with advanced soft tissue sarcoma: a discrete choice experiment. Patient. 2019;12(4):393–404. https://doi.org/10.1007/s40271-019-00355-0 .
doi: 10.1007/s40271-019-00355-0
pubmed: 30659513
Liu FX, Witt EA, Ebbinghaus S, DiBonaventura BG, Basurto E, Joseph RW. Patient and oncology nurse preferences for the treatment options in advanced melanoma: a discrete choice experiment. Cancer Nurs. 2019;42(1):E52–9. https://doi.org/10.1097/NCC.0000000000000557 .
doi: 10.1097/NCC.0000000000000557
pubmed: 29076867
MacEwan JP, Doctor J, Mulligan K, May SG, Batt K, Zacker C, et al. The value of progression-free survival in metastatic breast cancer: results from a survey of patients and providers. MDM Policy Pract. 2019;4(1):2381468319855386. https://doi.org/10.1177/2381468319855386 .
doi: 10.1177/2381468319855386
pubmed: 31259249
pmcid: 6589981
Mansfield C, Ndife B, Chen J, Gallaher K, Ghate S. Patient preferences for treatment of metastatic melanoma. Future Oncol. 2019;15(11):1255–68. https://doi.org/10.2217/fon-2018-0871 .
doi: 10.2217/fon-2018-0871
pubmed: 30694080
McMullen S, Hess LM, Kim ES, Levy B, Mohamed M, Waterhouse D, et al. Treatment decisions for advanced non-squamous non-small cell lung cancer: patient and physician perspectives on maintenance therapy. Patient. 2019;12(2):223–33. https://doi.org/10.1007/s40271-018-0327-3 .
doi: 10.1007/s40271-018-0327-3
pubmed: 30128728
Muhlbacher AC, Juhnke C. Patient preferences concerning alternative treatments for neuroendocrine tumors: results of the “PIANO-study.” Int J Technol Assess Health Care. 2019;35(3):243–51. https://doi.org/10.1017/S0266462319000217 .
doi: 10.1017/S0266462319000217
pubmed: 31044688
Nakayama M, Kobayashi H, Okazaki M, Imanaka K, Yoshizawa K, Mahlich J. Patient preferences and urologist judgments on prostate cancer therapy in Japan. Am J Mens Health. 2018;12(4):1094–101. https://doi.org/10.1177/1557988318776123 .
doi: 10.1177/1557988318776123
pubmed: 29774804
pmcid: 6131454
Nickel B, Howard K, Brito JP, Barratt A, Moynihan R, McCaffery K. Association of preferences for papillary thyroid cancer treatment with disease terminology: a discrete choice experiment. JAMA Otolaryngol Head Neck Surg. 2018;144(10):887–96. https://doi.org/10.1001/jamaoto.2018.1694 .
doi: 10.1001/jamaoto.2018.1694
pubmed: 30140909
pmcid: 6233835
Noordman BJ, de Bekker-Grob EW, Coene P, van der Harst E, Lagarde SM, Shapiro J, et al. Patients’ preferences for treatment after neoadjuvant chemoradiotherapy for oesophageal cancer. Br J Surg. 2018;105(12):1630–8. https://doi.org/10.1002/bjs.10897 .
doi: 10.1002/bjs.10897
pubmed: 29947418
Norman R, Anstey M, Hasani A, Li I, Robinson S. What matters to potential patients in chemotherapy service delivery? A discrete choice experiment. Appl Health Econ Health Policy. 2020;18(4):589–96. https://doi.org/10.1007/s40258-020-00555-y .
doi: 10.1007/s40258-020-00555-y
pubmed: 32026331
Omori Y, Enatsu S, Cai Z, Ishiguro H. Patients’ preferences for postmenopausal hormone receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer treatments in Japan. Breast Cancer. 2019;26(5):652–62. https://doi.org/10.1007/s12282-019-00965-4 .
doi: 10.1007/s12282-019-00965-4
pubmed: 30949915
Pauwels K, Huys I, Casteels M, Denier Y, Vandebroek M, Simoens S. What does society value about cancer medicines? A discrete choice experiment in the Belgian population. Appl Health Econ Health Policy. 2019;17(6):895–902. https://doi.org/10.1007/s40258-019-00504-4 .
doi: 10.1007/s40258-019-00504-4
pubmed: 31359269
pmcid: 6885509
Phillips CM, Deal K, Powis M, Singh S, Dharmakulaseelan L, Naik H, et al. Evaluating patients’ perception of the risk of acute care visits during systemic therapy for cancer. JCO Oncol Pract. 2020;16(7):e622–9. https://doi.org/10.1200/JOP.19.00551 .
doi: 10.1200/JOP.19.00551
pubmed: 32074009
Qian Y, Arellano J, Gatta F, Hechmati G, Hauber AB, Mohamed AF, et al. Physicians’ preferences for bone metastases treatments in France, Germany and the United Kingdom. BMC Health Serv Res. 2018;18(1):518. https://doi.org/10.1186/s12913-018-3272-x .
doi: 10.1186/s12913-018-3272-x
pubmed: 29970078
pmcid: 6030781
Rosato R, Di Cuonzo D, Ritorto G, Fanchini L, Bustreo S, Racca P, et al. Tailoring chemotherapy supply according to patients’ preferences: a quantitative method in colorectal cancer care. Curr Med Res Opin. 2020;36(1):73–81. https://doi.org/10.1080/03007995.2019.1670475 .
doi: 10.1080/03007995.2019.1670475
pubmed: 31535573
Salampessy BH, Bijlsma WR, van der Hijden E, Koolman X, Portrait FRM. On selecting quality indicators: preferences of patients with breast and colon cancers regarding hospital quality indicators. BMJ Qual Saf. 2020;29(7):576–85. https://doi.org/10.1136/bmjqs-2019-009818 .
doi: 10.1136/bmjqs-2019-009818
pubmed: 31831636
Seo J, Smith BD, Estey E, Voyard E, O’Donoghue B, Bridges JFP. Developing an instrument to assess patient preferences for benefits and risks of treating acute myeloid leukemia to promote patient-focused drug development. Curr Med Res Opin. 2018;34(12):2031–9. https://doi.org/10.1080/03007995.2018.1456414 .
doi: 10.1080/03007995.2018.1456414
pubmed: 29565196
Spaich S, Kinder J, Hetjens S, Fuxius S, Gerhardt A, Sutterlin M. Patient preferences regarding chemotherapy in metastatic breast cancer—a conjoint analysis for common taxanes. Front Oncol. 2018;8:535. https://doi.org/10.3389/fonc.2018.00535 .
doi: 10.3389/fonc.2018.00535
pubmed: 30519542
pmcid: 6260130
Stein EM, Yang M, Guerin A, Gao W, Galebach P, Xiang CQ, et al. Assessing utility values for treatment-related health states of acute myeloid leukemia in the United States. Health Qual Life Outcomes. 2018;16(1):193. https://doi.org/10.1186/s12955-018-1013-9 .
doi: 10.1186/s12955-018-1013-9
pubmed: 30241538
pmcid: 6151058
Stellato D, Thabane M, Eichten C, Delea TE. Preferences of Canadian patients and physicians for adjuvant treatments for melanoma. Curr Oncol. 2019;26(6):e755–65. https://doi.org/10.3747/co.26.5085 .
doi: 10.3747/co.26.5085
pubmed: 31896946
pmcid: 6927775
Stenehjem DD, Au TH, Ngorsuraches S, Ma J, Bauer H, Wanishayakorn T, et al. Immunotargeted therapy in melanoma: patient, provider preferences, and willingness to pay at an academic cancer center. Melanoma Res. 2019;29(6):626–34. https://doi.org/10.1097/CMR.0000000000000572 .
doi: 10.1097/CMR.0000000000000572
pubmed: 30688762
pmcid: 6887632
Storm-Dickerson T, Das L, Gabriel A, Gitlin M, Farias J, Macarios D. What drives patient choice: preferences for approaches to surgical treatments for breast cancer beyond traditional clinical benchmarks. Plast Reconstr Surg Glob Open. 2018;6(4):e1746. https://doi.org/10.1097/GOX.0000000000001746 .
doi: 10.1097/GOX.0000000000001746
pubmed: 29876182
pmcid: 5977949
Sun H, Wang H, Shi L, Wang M, Li J, Shi J, et al. Physician preferences for chemotherapy in the treatment of non-small cell lung cancer in china: evidence from multicentre discrete choice experiments. BMJ Open. 2020;10(2):e032336. https://doi.org/10.1136/bmjopen-2019-032336 .
doi: 10.1136/bmjopen-2019-032336
pubmed: 32051302
pmcid: 7045216
Sun H, Wang H, Xu N, Li J, Shi J, Zhou N, et al. Patient preferences for chemotherapy in the treatment of non-small cell lung cancer: a multicenter discrete choice experiment (DCE) study in china. Patient Prefer Adherence. 2019;13:1701–9. https://doi.org/10.2147/PPA.S224529 .
doi: 10.2147/PPA.S224529
pubmed: 31631985
pmcid: 6790116
Valenti V, Ramos J, Perez C, Capdevila L, Ruiz I, Tikhomirova L, et al. Increased survival time or better quality of life? Trade-off between benefits and adverse events in the systemic treatment of cancer. Clin Transl Oncol. 2020;22(6):935–42. https://doi.org/10.1007/s12094-019-02216-6 .
doi: 10.1007/s12094-019-02216-6
pubmed: 31559581
Vallejo-Torres L, Melnychuk M, Vindrola-Padros C, Aitchison M, Clarke CS, Fulop NJ, et al. Discrete-choice experiment to analyse preferences for centralizing specialist cancer surgery services. Br J Surg. 2018;105(5):587–96. https://doi.org/10.1002/bjs.10761 .
doi: 10.1002/bjs.10761
pubmed: 29512137
pmcid: 5900867
Watson V, McCartan N, Krucien N, Abu V, Ikenwilo D, Emberton M, et al. Evaluating the trade-offs men with localized prostate cancer make between the risks and benefits of treatments: the compare study. J Urol. 2020;204(2):273–80. https://doi.org/10.1097/JU.0000000000000754 .
doi: 10.1097/JU.0000000000000754
pubmed: 31967521
Weilandt J, Diehl K, Schaarschmidt ML, Kieker F, Sasama B, Pronk M, et al. Patient preferences in adjuvant and palliative treatment of advanced melanoma: a discrete choice experiment. Acta Dermatovenereol. 2020;100(6):adv00083. https://doi.org/10.2340/00015555-3422 .
doi: 10.2340/00015555-3422
Wilke T, Mueller S, Bauer S, Pitura S, Probst L, Ratsch BA, et al. Treatment of relapsed refractory multiple myeloma: which new PI-based combination treatments do patients prefer? Patient Prefer Adherence. 2018;12:2387–96. https://doi.org/10.2147/PPA.S183187 .
doi: 10.2147/PPA.S183187
pubmed: 30519004
pmcid: 6235009
Benjamin L, Cotte FE, Philippe C, Mercier F, Bachelot T, Vidal-Trecan G. Physicians’ preferences for prescribing oral and intravenous anticancer drugs: a discrete choice experiment. Eur J Cancer. 2012;48(6):912–20. https://doi.org/10.1016/j.ejca.2011.09.019 .
doi: 10.1016/j.ejca.2011.09.019
pubmed: 22033327
Mohamed AF, Gonzalez JM, Fairchild A. Patient benefit-risk tradeoffs for radioactive iodine-refractory differentiated thyroid cancer treatments. J Thyroid Res. 2015;2015:438235. https://doi.org/10.1155/2015/438235 .
doi: 10.1155/2015/438235
pubmed: 26697261
pmcid: 4677225
Muhlbacher AC, Nubling M. Analysis of physicians’ perspectives versus patients’ preferences: direct assessment and discrete choice experiments in the therapy of multiple myeloma. Eur J Health Econ. 2011;12(3):193–203. https://doi.org/10.1007/s10198-010-0218-6 .
doi: 10.1007/s10198-010-0218-6
pubmed: 20107856
Regier DA, Diorio C, Ethier MC, Alli A, Alexander S, Boydell KM, et al. Discrete choice experiment to evaluate factors that influence preferences for antibiotic prophylaxis in pediatric oncology. PLoS One. 2012;7(10):e47470. https://doi.org/10.1371/journal.pone.0047470 .
doi: 10.1371/journal.pone.0047470
pubmed: 23082169
pmcid: 3474806
Essers BA, Dirksen CD, Prins MH, Neumann HA. Assessing the public’s preference for surgical treatment of primary basal cell carcinoma: a discrete-choice experiment in the south of the Netherlands. Dermatol Surg. 2010;36(12):1950–5. https://doi.org/10.1111/j.1524-4725.2010.01805.x .
doi: 10.1111/j.1524-4725.2010.01805.x
pubmed: 21070461
Qian Y, Arellano J, Hauber AB, Mohamed AF, Gonzalez JM, Hechmati G, et al. Patient, caregiver, and nurse preferences for treatments for bone metastases from solid tumors. Patient. 2016;9(4):323–33. https://doi.org/10.1007/s40271-015-0158-4 .
doi: 10.1007/s40271-015-0158-4
pubmed: 26821359
pmcid: 4925690
Meghani SH, Chittams J, Hanlon AL, Curry J. Measuring preferences for analgesic treatment for cancer pain: how do African–Americans and whites perform on choice-based conjoint (CBC) analysis experiments? BMC Med Inform Decis Mak. 2013;13:118. https://doi.org/10.1186/1472-6947-13-118 .
doi: 10.1186/1472-6947-13-118
pubmed: 24134426
pmcid: 3924351
Arellano J, Gonzalez JM, Qian Y, Habib M, Mohamed AF, Gatta F, et al. Physician preferences for bone metastasis drug therapy in canada. Curr Oncol. 2015;22(5):e342-348. https://doi.org/10.3747/co.22.2380 .
doi: 10.3747/co.22.2380
pubmed: 26628874
pmcid: 4608407
Thrumurthy SG, Morris JJ, Mughal MM, Ward JB. Discrete-choice preference comparison between patients and doctors for the surgical management of oesophagogastric cancer. Br J Surg. 2011;98(8):1124–31. https://doi.org/10.1002/bjs.7537 (discussion 1132).
doi: 10.1002/bjs.7537
pubmed: 21674471
Salkeld G, Solomon M, Butow P, Short L. Discrete-choice experiment to measure patient preferences for the surgical management of colorectal cancer. Br J Surg. 2005;92(6):742–7. https://doi.org/10.1002/bjs.4917 .
doi: 10.1002/bjs.4917
pubmed: 15838911
Hauber AB, Arellano J, Qian Y, Gonzalez JM, Posner JD, Mohamed AF, et al. Patient preferences for treatments to delay bone metastases. Prostate. 2014;74(15):1488–97. https://doi.org/10.1002/pros.22865 .
doi: 10.1002/pros.22865
pubmed: 25132622
Essers BA, van Helvoort-Postulart D, Prins MH, Neumann M, Dirksen CD. Does the inclusion of a cost attribute result in different preferences for the surgical treatment of primary basal cell carcinoma? A comparison of two discrete-choice experiments. Pharmacoeconomics. 2010;28(6):507–20. https://doi.org/10.2165/11532240-000000000-00000 .
doi: 10.2165/11532240-000000000-00000
pubmed: 20387912
de Bekker-Grob EW, Niers EJ, van Lanschot JJ, Steyerberg EW, Wijnhoven BP. Patients’ preferences for surgical management of esophageal cancer: a discrete choice experiment. World J Surg. 2015;39(10):2492–9. https://doi.org/10.1007/s00268-015-3148-8 .
doi: 10.1007/s00268-015-3148-8
pubmed: 26170156
pmcid: 4554743
Damen TH, de Bekker-Grob EW, Mureau MA, Menke-Pluijmers MB, Seynaeve C, Hofer SO, et al. Patients’ preferences for breast reconstruction: a discrete choice experiment. J Plast Reconstr Aesthet Surg. 2011;64(1):75–83. https://doi.org/10.1016/j.bjps.2010.04.030 .
doi: 10.1016/j.bjps.2010.04.030
pubmed: 20570232
de Bekker-Grob EW, Bliemer MC, Donkers B, Essink-Bot ML, Korfage IJ, Roobol MJ, et al. Patients’ and urologists’ preferences for prostate cancer treatment: a discrete choice experiment. Br J Cancer. 2013;109(3):633–40. https://doi.org/10.1038/bjc.2013.370 .
doi: 10.1038/bjc.2013.370
pubmed: 23860533
pmcid: 3738130
Malhotra C, Farooqui MA, Kanesvaran R, Bilger M, Finkelstein E. Comparison of preferences for end-of-life care among patients with advanced cancer and their caregivers: a discrete choice experiment. Palliat Med. 2015;29(9):842–50. https://doi.org/10.1177/0269216315578803 .
doi: 10.1177/0269216315578803
pubmed: 25805740
Lathia N, Isogai PK, Walker SE, De Angelis C, Cheung MC, Hoch JS, et al. Eliciting patients’ preferences for outpatient treatment of febrile neutropenia: a discrete choice experiment. Support Care Cancer. 2013;21(1):245–51. https://doi.org/10.1007/s00520-012-1517-5 .
doi: 10.1007/s00520-012-1517-5
pubmed: 22684150
Wong MK, Mohamed AF, Hauber AB, Yang JC, Liu Z, Rogerio J, et al. Patients rank toxicity against progression free survival in second-line treatment of advanced renal cell carcinoma. J Med Econ. 2012;15(6):1139–48. https://doi.org/10.3111/13696998.2012.708689 .
doi: 10.3111/13696998.2012.708689
pubmed: 22808923
Lee JY, Kim K, Lee YS, Kim HY, Nam EJ, Kim S, et al. Treatment preferences of advanced ovarian cancer patients for adding bevacizumab to first-line therapy. Gynecol Oncol. 2016;143(3):622–7. https://doi.org/10.1016/j.ygyno.2016.10.021 .
doi: 10.1016/j.ygyno.2016.10.021
pubmed: 27771167
Havrilesky LJ, Alvarez Secord A, Ehrisman JA, Berchuck A, Valea FA, Lee PS, et al. Patient preferences in advanced or recurrent ovarian cancer. Cancer. 2014;120(23):3651–9. https://doi.org/10.1002/cncr.28940 .
doi: 10.1002/cncr.28940
pubmed: 25091693
Tinelli M, Ozolins M, Bath-Hextall F, Williams HC. What determines patient preferences for treating low risk basal cell carcinoma when comparing surgery vs imiquimod? A discrete choice experiment survey from the SINS trial. BMC Dermatol. 2012;12:19. https://doi.org/10.1186/1471-5945-12-19 .
doi: 10.1186/1471-5945-12-19
pubmed: 23035730
pmcid: 3532314
Bridges JF, Mohamed AF, Finnern HW, Woehl A, Hauber AB. Patients’ preferences for treatment outcomes for advanced non-small cell lung cancer: a conjoint analysis. Lung Cancer. 2012;77(1):224–31. https://doi.org/10.1016/j.lungcan.2012.01.016 .
doi: 10.1016/j.lungcan.2012.01.016
pubmed: 22369719
Uemura H, Matsubara N, Kimura G, Yamaguchi A, Ledesma DA, DiBonaventura M, et al. Patient preferences for treatment of castration-resistant prostate cancer in Japan: a discrete-choice experiment. BMC Urol. 2016;16(1):63. https://doi.org/10.1186/s12894-016-0182-2 .
doi: 10.1186/s12894-016-0182-2
pubmed: 27814714
pmcid: 5095997
Landfeldt E, Eriksson J, Ireland S, Musingarimi P, Jackson C, Tweats E, et al. Patient, physician, and general population preferences for treatment characteristics in relapsed or refractory chronic lymphocytic leukemia: a conjoint analysis. Leuk Res. 2016;40:17–23. https://doi.org/10.1016/j.leukres.2015.11.006 .
doi: 10.1016/j.leukres.2015.11.006
pubmed: 26654707
Caldon LJ, Walters SJ, Ratcliffe J, Reed MW. What influences clinicians’ operative preferences for women with breast cancer? An application of the discrete choice experiment. Eur J Cancer. 2007;43(11):1662–9. https://doi.org/10.1016/j.ejca.2007.04.021 .
doi: 10.1016/j.ejca.2007.04.021
pubmed: 17555955
Morgan JL, Walters SJ, Collins K, Robinson TG, Cheung KL, Audisio R, et al. What influences healthcare professionals’ treatment preferences for older women with operable breast cancer? An application of the discrete choice experiment. Eur J Surg Oncol. 2017;43(7):1282–7. https://doi.org/10.1016/j.ejso.2017.01.012 .
doi: 10.1016/j.ejso.2017.01.012
pubmed: 28237423
Muhlbacher AC, Bethge S. Patients’ preferences: a discrete-choice experiment for treatment of non-small-cell lung cancer. Eur J Health Econ. 2015;16(6):657–70. https://doi.org/10.1007/s10198-014-0622-4 .
doi: 10.1007/s10198-014-0622-4
pubmed: 25135768
Ossa DF, Briggs A, McIntosh E, Cowell W, Littlewood T, Sculpher M. Recombinant erythropoietin for chemotherapy-related anaemia: economic value and health-related quality-of-life assessment using direct utility elicitation and discrete choice experiment methods. Pharmacoeconomics. 2007;25(3):223–37. https://doi.org/10.2165/00019053-200725030-00005 .
doi: 10.2165/00019053-200725030-00005
pubmed: 17335308
Sculpher M, Bryan S, Fry P, de Winter P, Payne H, Emberton M. Patients’ preferences for the management of non-metastatic prostate cancer: discrete choice experiment. BMJ. 2004;328(7436):382. https://doi.org/10.1136/bmj.37972.497234.44 .
doi: 10.1136/bmj.37972.497234.44
pubmed: 14751919
pmcid: 341386
Aristides M, Chen J, Schulz M, Williamson E, Clarke S, Grant K. Conjoint analysis of a new chemotherapy: willingness to pay and preference for the features of raltitrexed versus standard therapy in advanced colorectal cancer. Pharmacoeconomics. 2002;20(11):775–84. https://doi.org/10.2165/00019053-200220110-00006 .
doi: 10.2165/00019053-200220110-00006
pubmed: 12201796
Sung L, Alibhai SM, Ethier MC, Teuffel O, Cheng S, Fisman D, et al. Discrete choice experiment produced estimates of acceptable risks of therapeutic options in cancer patients with febrile neutropenia. J Clin Epidemiol. 2012;65(6):627–34. https://doi.org/10.1016/j.jclinepi.2011.11.008 .
doi: 10.1016/j.jclinepi.2011.11.008
pubmed: 22424607
Johnson P, Bancroft T, Barron R, Legg J, Li X, Watson H, et al. Discrete choice experiment to estimate breast cancer patients’ preferences and willingness to pay for prophylactic granulocyte colony-stimulating factors. Value Health. 2014;17(4):380–9. https://doi.org/10.1016/j.jval.2014.01.002 .
doi: 10.1016/j.jval.2014.01.002
pubmed: 24968998
Weston A, Fitzgerald P. Discrete choice experiment to derive willingness to pay for methyl aminolevulinate photodynamic therapy versus simple excision surgery in basal cell carcinoma. Pharmacoeconomics. 2004;22(18):1195–208. https://doi.org/10.2165/00019053-200422180-00004 .
doi: 10.2165/00019053-200422180-00004
pubmed: 15606226
Park MH, Jo C, Bae EY, Lee EK. A comparison of preferences of targeted therapy for metastatic renal cell carcinoma between the patient group and health care professional group in South Korea. Value Health. 2012;15(6):933–9. https://doi.org/10.1016/j.jval.2012.05.008 .
doi: 10.1016/j.jval.2012.05.008
pubmed: 22999144
Finkelstein E, Malhotra C, Chay J, Ozdemir S, Chopra A, Kanesvaran R. Impact of treatment subsidies and cash payouts on treatment choices at the end of life. Value Health. 2016;19(6):788–94. https://doi.org/10.1016/j.jval.2016.02.015 .
doi: 10.1016/j.jval.2016.02.015
pubmed: 27712706
Ngorsuraches S, Thongkeaw K. Patients’ preferences and willingness-to-pay for postmenopausal hormone receptor-positive, HER2-negative advanced breast cancer treatments after failure of standard treatments. Springerplus. 2015;4:674. https://doi.org/10.1186/s40064-015-1482-9 .
doi: 10.1186/s40064-015-1482-9
pubmed: 26558177
pmcid: 4635317
Eliasson L, de Freitas HM, Dearden L, Calimlim B, Lloyd AJ. Patients’ preferences for the treatment of metastatic castrate-resistant prostate cancer: a discrete choice experiment. Clin Ther. 2017;39(4):723–37. https://doi.org/10.1016/j.clinthera.2017.02.009 .
doi: 10.1016/j.clinthera.2017.02.009
pubmed: 28366592
Hechmati G, Hauber AB, Arellano J, Mohamed AF, Qian Y, Gatta F, et al. Patients’ preferences for bone metastases treatments in France, Germany and the UK. Support Care Cancer. 2015;23(1):21–8. https://doi.org/10.1007/s00520-014-2309-x .
doi: 10.1007/s00520-014-2309-x
pubmed: 24939674
Hauber AB, Gonzalez JM, Coombs J, Sirulnik A, Palacios D, Scherzer N. Patient preferences for reducing toxicities of treatments for gastrointestinal stromal tumor (GIST). Patient Prefer Adherence. 2011;5:307–14. https://doi.org/10.2147/PPA.S20445 .
doi: 10.2147/PPA.S20445
pubmed: 21792302
pmcid: 3140312
Lloyd A, Penson D, Dewilde S, Kleinman L. Eliciting patient preferences for hormonal therapy options in the treatment of metastatic prostate cancer. Prostate Cancer Prostatic Dis. 2008;11(2):153–9. https://doi.org/10.1038/sj.pcan.4500992 .
doi: 10.1038/sj.pcan.4500992
pubmed: 17637761
Muhlbacher AC, Lincke HJ, Nubling M. Evaluating patients’ preferences for multiple myeloma therapy, a discrete-choice-experiment. Psychosoc Med. 2008;5:Doc10.
pubmed: 19742282
pmcid: 2736517
Bridges JF, Hauber AB, Marshall D, Lloyd A, Prosser LA, Regier DA, et al. Conjoint analysis applications in health—a checklist: a report of the ISPOR good research practices for conjoint analysis task force. Value Health. 2011;14(4):403–13. https://doi.org/10.1016/j.jval.2010.11.013 .
doi: 10.1016/j.jval.2010.11.013
pubmed: 21669364
US FDA. Public workshop on patient-focused drug development: Guidance 1—collecting comprehensive and representative input. 2017. https://www.fda.gov/drugs/news-events-human-drugs/public-workshop-patient-focused-drug-development-guidance-1-collecting-comprehensive-and . Accessed 28 Aug 2020.
US FDA. The voice of the patient: A series of reports from FDA’s patient-focused drug development initiative. 2017. https://www.fda.gov/industry/prescription-drug-user-fee-amendments/voice-patient-series-reports-fdas-patient-focused-drug-development-initiative . Accessed 28 Aug 2020.
Ikenwilo D, Heidenreich S, Ryan M, Mankowski C, Nazir J, Watson V. The best of both worlds: an example mixed methods approach to understand men’s preferences for the treatment of lower urinary tract symptoms. Patient. 2018;11(1):55–67. https://doi.org/10.1007/s40271-017-0263-7 .
doi: 10.1007/s40271-017-0263-7
pubmed: 28660567
Janssen EM, Segal JB, Bridges JF. A framework for instrument development of a choice experiment: an application to type 2 diabetes. Patient. 2016;9(5):465–79. https://doi.org/10.1007/s40271-016-0170-3 .
doi: 10.1007/s40271-016-0170-3
pubmed: 27120338
Ryan M, Watson V, Entwistle V. Rationalising the ‘irrational’: a think aloud study of discrete choice experiment responses. Health Econ. 2009;18(3):321–36. https://doi.org/10.1002/hec.1369 .
doi: 10.1002/hec.1369
pubmed: 18651601
Sosnowski R, Kulpa M, Zietalewicz U, Wolski JK, Nowakowski R, Bakula R, et al. Basic issues concerning health-related quality of life. Cent Eur J Urol. 2017;70(2):206–11. https://doi.org/10.5173/ceju.2017.923 .
doi: 10.5173/ceju.2017.923
Trask PC, Hsu MA, McQuellon R. Other paradigms: health-related quality of life as a measure in cancer treatment: its importance and relevance. Cancer J. 2009;15(5):435–40. https://doi.org/10.1097/PPO.0b013e3181b9c5b9 .
doi: 10.1097/PPO.0b013e3181b9c5b9
pubmed: 19826365
Calman KC. Quality of life in cancer patients—an hypothesis. J Med Ethics. 1984;10(3):124–7. https://doi.org/10.1136/jme.10.3.124 .
doi: 10.1136/jme.10.3.124
pubmed: 6334159
pmcid: 1374977
Ryan M. Using conjoint analysis to take account of patient preferences and go beyond health outcomes: an application to in vitro fertilisation. Soc Sci Med. 1999;48(4):535–46. https://doi.org/10.1016/s0277-9536(98)00374-8 .
doi: 10.1016/s0277-9536(98)00374-8
pubmed: 10075178
Krahn M, Bremner KE, Tomlinson G, Ritvo P, Irvine J, Naglie G. Responsiveness of disease-specific and generic utility instruments in prostate cancer patients. Qual Life Res. 2007;16(3):509–22. https://doi.org/10.1007/s11136-006-9132-x .
doi: 10.1007/s11136-006-9132-x
pubmed: 17091359
Blazeby JM, Hall E, Aaronson NK, Lloyd L, Waters R, Kelly JD, et al. Validation and reliability testing of the EORTC QLQ-NMIBC24 questionnaire module to assess patient-reported outcomes in non-muscle-invasive bladder cancer. Eur Urol. 2014;66(6):1148–56. https://doi.org/10.1016/j.eururo.2014.02.034 .
doi: 10.1016/j.eururo.2014.02.034
pubmed: 24612661
pmcid: 4410297
Wagner LI, Robinson D Jr, Weiss M, Katz M, Greipp P, Fonseca R, et al. Content development for the functional assessment of cancer therapy-multiple myeloma (fact-mm): use of qualitative and quantitative methods for scale construction. J Pain Symptom Manag. 2012;43(6):1094–104. https://doi.org/10.1016/j.jpainsymman.2011.06.019 .
doi: 10.1016/j.jpainsymman.2011.06.019
Oken MM, Creech RH, Tormey DC, Horton J, Davis TE, McFadden ET, et al. Toxicity and response criteria of the eastern cooperative oncology group. Am J Clin Oncol. 1982;5(6):649–55.
doi: 10.1097/00000421-198212000-00014
de Bekker-Grob EW, Donkers B, Jonker MF, Stolk EA. Sample size requirements for discrete-choice experiments in healthcare: a practical guide. Patient. 2015;8(5):373–84. https://doi.org/10.1007/s40271-015-0118-z .
doi: 10.1007/s40271-015-0118-z
pubmed: 25726010
pmcid: 4575371
Hess S, Hensher D, Daly AJ. Not bored yet—revisiting respondent fatigue in stated choice experiments. Transp Res Part A Policy Pract. 2012;46(3):626–44.
doi: 10.1016/j.tra.2011.11.008
Carlsson F, Mørkbak MR, Olsen SB. The first time is the hardest: a test of ordering effects in choice experiments. J Choice Model. 2012;5(2):19–37.
doi: 10.1016/S1755-5345(13)70051-4
Bech M, Kjaer T, Lauridsen J. Does the number of choice sets matter? Results from a web survey applying a discrete choice experiment. Health Econ. 2011;20(3):273–86. https://doi.org/10.1002/hec.1587 .
doi: 10.1002/hec.1587
pubmed: 20143304
Muhlbacher AC, Sadler A, Lamprecht B, Juhnke C. Patient preferences in the treatment of hemophilia a: a best-worst scaling case 3 analysis. Value Health. 2020;23(7):862–9. https://doi.org/10.1016/j.jval.2020.02.013 .
doi: 10.1016/j.jval.2020.02.013
pubmed: 32762987
Ghijben P, Lancsar E, Zavarsek S. Preferences for oral anticoagulants in atrial fibrillation: a best-best discrete choice experiment. Pharmacoeconomics. 2014;32(11):1115–27. https://doi.org/10.1007/s40273-014-0188-0 .
doi: 10.1007/s40273-014-0188-0
pubmed: 25027944
Krucien N, Watson V, Ryan M. Is best-worst scaling suitable for health state valuation? A comparison with discrete choice experiments. Health Econ. 2017;26(12):e1–16. https://doi.org/10.1002/hec.3459 .
doi: 10.1002/hec.3459
pubmed: 27917560
Heidenreich S, Phillips-Beyer A, Flamion B, Ross M, Seo J, Marsh K. Benefit-risk or risk-benefit trade-offs? Another look at attribute ordering effects in a pilot choice experiment. Patient. 2021;14(1):65–74. https://doi.org/10.1007/s40271-020-00475-y .
doi: 10.1007/s40271-020-00475-y
pubmed: 33174080
Vass CM, Davison NJ, Vander Stichele G, Payne K. A picture is worth a thousand words: the role of survey training materials in stated-preference studies. Patient. 2020;13(2):163–73. https://doi.org/10.1007/s40271-019-00391-w .
doi: 10.1007/s40271-019-00391-w
pubmed: 31565784
Scarpa R, Rose JM. Design efficiency for non-market valuation with choice modelling: how to measure it, what to report and why. Aust J Agric Resour Econ. 2008;52(3):253–82.
doi: 10.1111/j.1467-8489.2007.00436.x
Jackson Y, Flood E, Rhoten S, Janssen EM, Lundie M. Acrovoice: eliciting the patients’ perspective on acromegaly disease activity. Pituitary. 2019;22(1):62–9. https://doi.org/10.1007/s11102-018-00933-9 .
doi: 10.1007/s11102-018-00933-9
pubmed: 30627944
pmcid: 6373299
Hauber B, Coulter J. Using the threshold technique to elicit patient preferences: an introduction to the method and an overview of existing empirical applications. Appl Health Econ Health Policy. 2020;18(1):31–46. https://doi.org/10.1007/s40258-019-00521-3 .
doi: 10.1007/s40258-019-00521-3
pubmed: 31541362
Tervonen T, Gelhorn H, Sri Bhashyam S, Poon JL, Gries KS, Rentz A, et al. Mcda swing weighting and discrete choice experiments for elicitation of patient benefit-risk preferences: a critical assessment. Pharmacoepidemiol Drug Saf. 2017;26(12):1483–91. https://doi.org/10.1002/pds.4255 .
doi: 10.1002/pds.4255
pubmed: 28696023
Postmus D, Richard S, Bere N, van Valkenhoef G, Galinsky J, Low E, et al. Individual trade-offs between possible benefits and risks of cancer treatments: results from a stated preference study with patients with multiple myeloma. Oncologist. 2018;23(1):44–51. https://doi.org/10.1634/theoncologist.2017-0257 .
doi: 10.1634/theoncologist.2017-0257
pubmed: 29079638
Marsh K, Ijzerman M, Thokala P, Baltussen R, Boysen M, Kalo Z, et al. Multiple criteria decision analysis for health care decision making—emerging good practices: report 2 of the ISPOR MCDA emerging good practices task force. Value Health. 2016;19(2):125–37. https://doi.org/10.1016/j.jval.2015.12.016 .
doi: 10.1016/j.jval.2015.12.016
pubmed: 27021745
Bliemer MCJ, Rose JM, Chorus CG. Detecting dominance in stated choice data and accounting for dominance-based scale differences in logit models. Transp Res Part B Methodol. 2017;102:83–104. https://doi.org/10.1016/j.trb.2017.05.005 .
doi: 10.1016/j.trb.2017.05.005
Tervonen T, Schmidt-Ott T, Marsh K, Bridges JFP, Quaife M, Janssen E. Assessing rationality in discrete choice experiments in health: an investigation into the use of dominance tests. Value Health. 2018;21(10):1192–7. https://doi.org/10.1016/j.jval.2018.04.1822 .
doi: 10.1016/j.jval.2018.04.1822
pubmed: 30314620
Jonker MF, Donkers B, de Bekker-Grob EW, Stolk EA. Effect of level overlap and color coding on attribute non-attendance in discrete choice experiments. Value Health. 2018;21(7):767–71. https://doi.org/10.1016/j.jval.2017.10.002 .
doi: 10.1016/j.jval.2017.10.002
pubmed: 30005748
Maddala T, Phillips KA, Reed JF. An experiment on simplifying conjoint analysis designs for measuring preferences. Health Econ. 2003;12(12):1035–47. https://doi.org/10.1002/hec.798 .
doi: 10.1002/hec.798
pubmed: 14673812