Integration of Mass Spectrometry Imaging and Machine Learning Visualizes Region-Specific Age-Induced and Drug-Target Metabolic Perturbations in the Brain.


Journal

ACS chemical neuroscience
ISSN: 1948-7193
Titre abrégé: ACS Chem Neurosci
Pays: United States
ID NLM: 101525337

Informations de publication

Date de publication:
19 05 2021
Historique:
pubmed: 4 5 2021
medline: 22 6 2021
entrez: 3 5 2021
Statut: ppublish

Résumé

Detailed metabolic imaging of specific brain regions in early aging may expose pathophysiological mechanisms and indicate effective neuropharmacological targets in the onset of cognitive decline. Comprehensive imaging of brain aging and drug-target effects is restricted using conventional methodology. We simultaneously visualized multiple metabolic alterations induced by normal aging in specific regions of mouse brains by integrating Fourier-transform ion cyclotron resonance mass spectrometry imaging and combined supervised and unsupervised machine learning models. We examined the interplay between aging and the response to tacrine-induced acetylcholinesterase inhibition, a well-characterized therapeutic treatment against dementia. The dipeptide carnosine (β-alanyl-l-histidine) and the vitamin α-tocopherol were significantly elevated by aging in different brain regions. l-Carnitine and acetylcholine metabolism were found to be major pathways affected by aging and tacrine administration in a brain region-specific manner, indicating altered mitochondrial function and neurotransmission. The highly interconnected hippocampus and retrosplenial cortex displayed different age-induced alterations in lipids and acylcarnitines, reflecting diverse region-specific metabolic effects. The subregional differences observed in the hippocampal formation of several lipid metabolites demonstrate the unique potential of the technique compared to standard mass spectrometry approaches. An age-induced increase of endogenous antioxidants, such as α-tocopherol, in the hippocampus was detected, suggesting an augmentation of neuroprotective mechanisms in early aging. Our comprehensive imaging approach visualized heterogeneous age-induced metabolic perturbations in mitochondrial function, neurotransmission, and lipid signaling, not always attenuated by acetylcholinesterase inhibition.

Identifiants

pubmed: 33939923
doi: 10.1021/acschemneuro.1c00103
pmc: PMC8291481
doi:

Substances chimiques

Pharmaceutical Preparations 0
Tacrine 4VX7YNB537

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1811-1823

Références

J Proteome Res. 2012 Apr 6;11(4):2224-35
pubmed: 22225495
Anal Chem. 2012 Aug 21;84(16):7152-7
pubmed: 22860714
J Neurochem. 2007 Dec;103(5):2058-65
pubmed: 17854384
Nat Methods. 2019 Oct;16(10):1021-1028
pubmed: 31548706
Neurosci Biobehav Rev. 2010 Apr;34(5):721-33
pubmed: 19850077
Ann Neurol. 2014 Dec;76(6):845-61
pubmed: 25204284
Sci Signal. 2019 Jan 08;12(563):
pubmed: 30622195
Neurobiol Aging. 2005 Nov-Dec;26(10):1343-55
pubmed: 16243605
Chem Sci. 2017 May 1;8(5):3926-3938
pubmed: 28553535
Proc Natl Acad Sci U S A. 2016 Apr 19;113(16):4252-9
pubmed: 27036001
Neuropsychopharmacology. 2019 Nov;44(12):2091-2098
pubmed: 31009936
Adv Exp Med Biol. 2010;698:52-67
pubmed: 21520703
Am J Physiol Regul Integr Comp Physiol. 2009 Apr;296(4):R986-91
pubmed: 19225147
Free Radic Biol Med. 1991;10(5):263-75
pubmed: 1649783
PLoS One. 2011;6(6):e20411
pubmed: 21687659
Neurobiol Aging. 2004 Aug;25(7):843-51
pubmed: 15212838
Prog Lipid Res. 2010 Jan;49(1):61-75
pubmed: 19720082
J Pharmacol Exp Ther. 1999 May;289(2):768-73
pubmed: 10215651
Neurochem Res. 2012 Jul;37(7):1499-507
pubmed: 22359054
Sci Rep. 2013 Oct 04;3:2859
pubmed: 24091529
Neurobiol Aging. 2009 Mar;30(3):353-63
pubmed: 17719145
Clin Pharmacol Ther. 2008 Mar;83(3):416-21
pubmed: 17609685
SLAS Discov. 2019 Feb;24(2):89-110
pubmed: 30523710
Prog Brain Res. 2007;163:3-22
pubmed: 17765709
Metabolites. 2020 May 07;10(5):
pubmed: 32392884
Neuroscience. 1990;39(1):151-70
pubmed: 2089275
J Neurosci. 2011 Aug 10;31(32):11597-616
pubmed: 21832190
Nat Methods. 2017 Jan;14(1):57-60
pubmed: 27842059
Elife. 2015 Aug 18;4:
pubmed: 26284602
Nat Neurosci. 2013 Dec;16(12):1896-905
pubmed: 24162652
Neuroscience. 1989;31(3):571-91
pubmed: 2687721
Aging Cell. 2013 Feb;12(1):93-101
pubmed: 23107558
Neuropharmacology. 1989 Mar;28(3):199-206
pubmed: 2725846
Front Neuroanat. 2018 Oct 23;12:83
pubmed: 30405363
Nucleic Acids Res. 2007 Jan;35(Database issue):D521-6
pubmed: 17202168
Jpn J Pharmacol. 2002 Feb;88(2):206-12
pubmed: 11928722
Sci Rep. 2017 Oct 25;7(1):14069
pubmed: 29070813
Neuroimage. 2018 May 15;172:808-816
pubmed: 29329980
Drug Metab Dispos. 1996 Jun;24(6):628-33
pubmed: 8781777
Maturitas. 2016 Nov;93:28-33
pubmed: 27344459
J Alzheimers Dis. 2017;60(3):809-817
pubmed: 27911300
Neuron. 2014 Nov 19;84(4):697-707
pubmed: 25453841
Mass Spectrom Rev. 2012 Jan-Feb;31(1):70-95
pubmed: 21538458
Br J Clin Pharmacol. 2004 Jan;57(1):6-14
pubmed: 14678335
J Neuropsychiatry Clin Neurosci. 2011 Winter;23(1):6-15
pubmed: 21304134
J Neuropathol Exp Neurol. 2016 Mar;75(3):198-213
pubmed: 26888305
Mol Biosyst. 2009 Oct;5(10):1204-13
pubmed: 19756310
Neurochem Res. 1990 Jun;15(6):597-601
pubmed: 2215852
Mol Pharmacol. 2006 Nov;70(5):1602-11
pubmed: 16931768
Biochem Biophys Res Commun. 2017 Nov 25;493(3):1356-1363
pubmed: 28970069
Eur J Neurosci. 2003 Nov;18(9):2663-7
pubmed: 14622168
Physiol Rev. 2013 Oct;93(4):1803-45
pubmed: 24137022
Microsc Res Tech. 2001 Jan 1;52(1):31-7
pubmed: 11135446
Proc Natl Acad Sci U S A. 2011 May 24;108(21):8873-8
pubmed: 21555581
Curr Biol. 2012 Sep 11;22(17):R741-52
pubmed: 22975005
Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):10771-8
pubmed: 7971961
Neurochem Res. 2017 Dec;42(12):3490-3503
pubmed: 28918494
Aging (Albany NY). 2016 May;8(5):1000-20
pubmed: 27182841

Auteurs

Theodosia Vallianatou (T)

Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Biomedical Centre 591, Uppsala University, SE-75124 Uppsala, Sweden.

Reza Shariatgorji (R)

Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Biomedical Centre 591, Uppsala University, SE-75124 Uppsala, Sweden.
Science for Life Laboratory, Spatial Mass Spectrometry, Biomedical Centre 591, Uppsala University, SE-75124 Uppsala, Sweden.

Anna Nilsson (A)

Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Biomedical Centre 591, Uppsala University, SE-75124 Uppsala, Sweden.
Science for Life Laboratory, Spatial Mass Spectrometry, Biomedical Centre 591, Uppsala University, SE-75124 Uppsala, Sweden.

Maria Karlgren (M)

Department of Pharmacy, Uppsala Drug Optimization and Pharmaceutical Profiling (UDOPP), Biomedical Centre 580, Uppsala University, SE-75123 Uppsala, Sweden.

Heather Hulme (H)

Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Biomedical Centre 591, Uppsala University, SE-75124 Uppsala, Sweden.

Elva Fridjonsdottir (E)

Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Biomedical Centre 591, Uppsala University, SE-75124 Uppsala, Sweden.

Per Svenningsson (P)

Section of Neurology, Department of Clinical Neuroscience, Karolinska Institutet, SE-17177 Stockholm, Sweden.

Per E Andrén (PE)

Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Biomedical Centre 591, Uppsala University, SE-75124 Uppsala, Sweden.
Science for Life Laboratory, Spatial Mass Spectrometry, Biomedical Centre 591, Uppsala University, SE-75124 Uppsala, Sweden.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Humans Pharmaceutical Preparations Drug Utilization Prescription Drugs
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice

Classifications MeSH