Childhood socioeconomic status is associated with psychometric intelligence and microstructural brain development.
Journal
Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179
Informations de publication
Date de publication:
29 04 2021
29 04 2021
Historique:
received:
05
06
2020
accepted:
10
03
2021
entrez:
30
4
2021
pubmed:
1
5
2021
medline:
6
8
2021
Statut:
epublish
Résumé
Childhood socioeconomic status is robustly associated with various children's cognitive factors and neural mechanisms. Here we show the association of childhood socioeconomic status with psychometric intelligence and mean diffusivity and fractional anisotropy using diffusion tensor imaging at the baseline experiment (N = 285) and longitudinal changes in these metrics after 3.0 ± 0.3 years (N = 223) in a large sample of normal Japanese children (mean age = 11.2 ± 3.1 years). After correcting for confounding factors, cross-sectional and longitudinal analyses show that higher childhood socioeconomic status is associated with greater baseline and baseline to follow-up increase of psychometric intelligence and mean diffusivity in areas around the bilateral fusiform gyrus. These results demonstrate that higher socioeconomic status is associated with higher psychometric intelligence measures and altered microstructural properties in the fusiform gyrus which plays a key role in reading and letter recognition and further augmentation of such tendencies during development. Definitive conclusions regarding the causality of these relationships requires intervention and physiological studies. However, the current findings should be considered when developing and revising policies regarding education.
Identifiants
pubmed: 33927305
doi: 10.1038/s42003-021-01974-w
pii: 10.1038/s42003-021-01974-w
pmc: PMC8084976
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
470Références
Noble, K. G., McCandliss, B. D. & Farah, M. J. Socioeconomic gradients predict individual differences in neurocognitive abilities. Dev. Sci. 10, 464–480 (2007).
pubmed: 17552936
doi: 10.1111/j.1467-7687.2007.00600.x
Evans, G. W. & Schamberg, M. A. Childhood poverty, chronic stress, and adult working memory. Proc. Natl Acad. Sci. 106, 6545–6549 (2009).
pubmed: 19332779
doi: 10.1073/pnas.0811910106
Kim, P. et al. Effects of childhood poverty and chronic stress on emotion regulatory brain function in adulthood. Proc. Natl Acad. Sci. 110, 18442–18447 (2013).
pubmed: 24145409
doi: 10.1073/pnas.1308240110
Hanson, J. L., Chandra, A., Wolfe, B. L. & Pollak, S. D. Association between income and the hippocampus. PLoS ONE 6, e18712 (2011).
pubmed: 21573231
pmcid: 3087752
doi: 10.1371/journal.pone.0018712
Ursache, A. & Noble, K. G. Neurocognitive development in socioeconomic context: Multiple mechanisms and implications for measuring socioeconomic status. Psychophysiology 53, 71–82 (2016).
pubmed: 26681619
pmcid: 4685721
doi: 10.1111/psyp.12547
Hurt, H. & Betancourt, L. M. Effect of socioeconomic status disparity on child language and neural outcome: how early is early? Pediatr. Res. 79, 148–158 (2015).
pubmed: 26484621
doi: 10.1038/pr.2015.202
Hair, N. L., Hanson, J. L., Wolfe, B. L. & Pollak, S. D. Association of child poverty, brain development, and academic achievement. JAMA pediatrics 169, 822–829 (2015).
pubmed: 26192216
pmcid: 4687959
doi: 10.1001/jamapediatrics.2015.1475
Lawson, G. M., Duda, J. T., Avants, B. B., Wu, J. & Farah, M. J. Associations between children’s socioeconomic status and prefrontal cortical thickness. Dev. Sci. 16, 641–652 (2013).
pubmed: 24033570
pmcid: 3775298
doi: 10.1111/desc.12096
Luby, J. et al. The effects of poverty on childhood brain development: the mediating effect of caregiving and stressful life events. JAMA Pediatrics 167, 1135–1142 (2013).
pubmed: 24165922
pmcid: 4001721
doi: 10.1001/jamapediatrics.2013.3139
McDermott, C. L. et al. Longitudinally mapping childhood socioeconomic status associations with cortical and subcortical morphology. J. Neurosci. 39, 1365–1373 (2019).
pubmed: 30587541
pmcid: 6381251
doi: 10.1523/JNEUROSCI.1808-18.2018
Noble, K. G. et al. Family income, parental education and brain structure in children and adolescents. Nat. Neurosci. 18, 773–778 (2015).
pubmed: 25821911
pmcid: 4414816
doi: 10.1038/nn.3983
Raizada, R. D., Richards, T. L., Meltzoff, A. & Kuhl, P. K. Socioeconomic status predicts hemispheric specialisation of the left inferior frontal gyrus in young children. Neuroimage 40, 1392–1401 (2008).
pubmed: 18308588
pmcid: 2679945
doi: 10.1016/j.neuroimage.2008.01.021
Betancourt, L. M. et al. Effect of socioeconomic status (SES) disparity on neural development in female African‐American infants at age 1 month. Dev. Sci. 19, 947–956 (2016).
pubmed: 26489876
doi: 10.1111/desc.12344
Hanson, J. L. et al. Family poverty affects the rate of human infant brain growth. PLoS ONE 8, e80954 (2013).
pubmed: 24349025
pmcid: 3859472
doi: 10.1371/journal.pone.0080954
Ursache, A. & Noble, K. G. Socioeconomic status, white matter, and executive function in children. Brain Behav. 6, e00531 (2016).
Beaulieu, C. The basis of anisotropic water diffusion in the nervous system–a technical review. NMR Biomed. 15, 435–455 (2002).
pubmed: 12489094
doi: 10.1002/nbm.782
Sagi, Y. et al. Learning in the fast lane: new insights into neuroplasticity. Neuron 73, 1195–1203 (2012).
pubmed: 22445346
doi: 10.1016/j.neuron.2012.01.025
Takeuchi, H. & Kawashima, R. Mean diffusivity in the dopaminergic system and neural differences related to dopaminergic system. Curr. Neuropharmacol. 16, 460–474 (2018).
pubmed: 29119929
pmcid: 6018195
doi: 10.2174/1570159X15666171109124839
Fujita, K., Maekawa, H., Dairoku, H. & Yamanaka K. Japanese Wechsler Adult Intelligence Scale 3rd edn. (Nihon Bunka Kagakusha, 2006).
Azuma, H. et al Japanese Wechsler Intelligence Scale for Children 3rd edn. (Nihon Bunka Kagakusha, 1998).
Casanova, R. et al. Biological parametric mapping: a statistical toolbox for multimodality brain image analysis. Neuroimage 34, 137–143 (2007).
pubmed: 17070709
doi: 10.1016/j.neuroimage.2006.09.011
Taki, Y. et al. Linear and curvilinear correlations of brain white matter volume, fractional anisotropy, and mean diffusivity with age using voxel-based and region of interest analyses in 246 healthy children. Hum. Brain Mapp. 34, 1842–1856 (2013).
pubmed: 22438164
doi: 10.1002/hbm.22027
Takeuchi, H. et al. Impact of videogame play on the brain’s microstructural properties: cross-sectional and longitudinal analyses. Mol. Psychiatry 21, 1781–1789 (2016).
pubmed: 26728566
pmcid: 5116480
doi: 10.1038/mp.2015.193
Takeuchi H. et al. Empathizing associates with mean diffusivity. Sci. Rep. 9, 8856 (2019).
Takeuchi, H. et al. Mean diffusivity associated with trait emotional intelligence. Soc. Cogn. Affect Neurosci. 14, 871–883 (2019).
pubmed: 31593230
pmcid: 6847659
doi: 10.1093/scan/nsz059
Takeuchi, H. et al. Working memory training impacts the mean diffusivity in the dopaminergic system. Brain Struct. Funct. 220, 3101–3111 (2015).
pubmed: 25023736
doi: 10.1007/s00429-014-0845-2
Johansen-Berg, H., Baptista, C. S. & Thomas, A. G. Human structural plasticity at record speed. Neuron 73, 1058–1060 (2012).
pubmed: 22445333
pmcid: 3353540
doi: 10.1016/j.neuron.2012.03.001
Feldman, H. M., Yeatman, J. D., Lee, E. S., Barde, L. H. & Gaman-Bean, S. Diffusion tensor imaging: a review for pediatric researchers and clinicians. J. Dev. Behav. Pediatrics: JDBP 31, 346 (2010).
doi: 10.1097/DBP.0b013e3181dcaa8b
Piccolo, L. R., Merz, E. C., He, X., Sowell, E. R. & Noble, K. G. Age-related differences in cortical thickness vary by socioeconomic status. PLoS ONE 11, e0162511 (2016).
pubmed: 27644039
pmcid: 5028041
doi: 10.1371/journal.pone.0162511
Farah, M. J. The neuroscience of socioeconomic status: correlates, causes, and consequences. Neuron 96, 56–71 (2017).
pubmed: 28957676
doi: 10.1016/j.neuron.2017.08.034
Thesen, T. et al. Sequential then interactive processing of letters and words in the left fusiform gyrus. Nat. Commun. 3, 1–8 (2012).
doi: 10.1038/ncomms2220
Noble, K. G., Wolmetz, M. E., Ochs, L. G., Farah, M. J. & McCandliss, B. D. Brain–behavior relationships in reading acquisition are modulated by socioeconomic factors. Dev. Sci. 9, 642–654 (2006).
pubmed: 17059461
doi: 10.1111/j.1467-7687.2006.00542.x
Trzaskowski, M. et al. Genetic influence on family socioeconomic status and children’s intelligence. Intelligence 42, 83–88 (2014).
pubmed: 24489417
pmcid: 3907681
doi: 10.1016/j.intell.2013.11.002
Takeuchi, H. et al. The effects of family socioeconomic status on psychological and neural mechanisms as well as their sex differences. Front. Hum. Neurosci. 12, 543 (2019).
pubmed: 30713493
pmcid: 6345688
doi: 10.3389/fnhum.2018.00543
Price, C. J. The anatomy of language: a review of 100 fMRI studies published in 2009. Ann. N. Y Acad. Sci. 1191, 62–88 (2010).
pubmed: 20392276
doi: 10.1111/j.1749-6632.2010.05444.x
Baddeley, A. Working memory: looking back and looking forward. Nat. Rev. Neurosci. 4, 829–839 (2003).
pubmed: 14523382
doi: 10.1038/nrn1201
Timmann, D. et al. The human cerebellum contributes to motor, emotional and cognitive associative learning. A review. Cortex 46, 845–857 (2010).
pubmed: 19665115
doi: 10.1016/j.cortex.2009.06.009
Desmond, J. E. & Fiez, J. A. Neuroimaging studies of the cerebellum: language, learning and memory. Trends Cogn. Sci. 2, 355–362 (1998).
pubmed: 21227232
doi: 10.1016/S1364-6613(98)01211-X
Von Stumm, S. & Plomin, R. Socioeconomic status and the growth of intelligence from infancy through adolescence. Intelligence 48, 30–36 (2015).
doi: 10.1016/j.intell.2014.10.002
Yamamoto, Y., Holloway, S. D. & Suzuki, S. Maternal involvement in preschool children’s education in Japan: relation to parenting beliefs and socioeconomic status. Early Child. Res. Q. 21, 332–346 (2006).
doi: 10.1016/j.ecresq.2006.07.008
Taki, Y. et al. Linear and curvilinear correlations of brain gray matter volume and density with age using voxel-based morphometry with the Akaike information criterion in 291 healthy children. Hum. Brain Mapp. 34, 1857–1871 (2013).
pubmed: 22505237
doi: 10.1002/hbm.22033
Taki, Y. et al. Breakfast staple types affect brain gray matter volume and cognitive function in healthy children. PLoS ONE 5, e15213 (2010).
pubmed: 21170334
pmcid: 2999543
doi: 10.1371/journal.pone.0015213
Takeuchi, H. et al. Impact of frequency of internet use on development of brain structures and verbal intelligence: longitudinal analyses. Hum. Brain Mapp. 39, 4471–4479 (2018).
pubmed: 29956399
pmcid: 6866412
doi: 10.1002/hbm.24286
Oldfield, R. C. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9, 97–113 (1971).
pubmed: 5146491
doi: 10.1016/0028-3932(71)90067-4
World_Medical_Association. Declaration of Helsinki. Law, Med. Health Care 19, 264 (1991).
doi: 10.1111/j.1748-720X.1991.tb01824.x
Shaw, P. et al. Intellectual ability and cortical development in children and adolescents. Nature 440, 676–679 (2006).
pubmed: 16572172
doi: 10.1038/nature04513
Takeuchi, H. et al. The impact of television viewing on brain structures: cross-sectional and longitudinal analyses. Cereb. Cortex 25, 1188–1197 (2015).
pubmed: 24256892
doi: 10.1093/cercor/bht315
Damoiseaux, J. S. & Greicius, M. D. Greater than the sum of its parts: a review of studies combining structural connectivity and resting-state functional connectivity. Brain Struct. Funct. 213, 525–533 (2009).
pubmed: 19565262
doi: 10.1007/s00429-009-0208-6
Takeuchi, H. et al. White matter structures associated with emotional intelligence: evidence from diffusion tensor imaging. Hum. Brain Mapp. 34, 1025–1034 (2013).
pubmed: 22139821
doi: 10.1002/hbm.21492
Takeuchi, H. et al. White matter structures associated with empathizing and systemizing in young adults. Neuroimage 77, 222–236 (2013).
pubmed: 23578577
doi: 10.1016/j.neuroimage.2013.04.004
Takeuchi, H. et al. Training of Working Memory Impacts Structural Connectivity. J. Neurosci. 30, 3297–3303 (2010).
pubmed: 20203189
pmcid: 6634113
doi: 10.1523/JNEUROSCI.4611-09.2010
Takeuchi, H. et al. White matter structures associated with creativity: evidence from diffusion tensor imaging. Neuroimage 51, 11–18 (2010).
pubmed: 20171286
doi: 10.1016/j.neuroimage.2010.02.035
Takeuchi, H. et al. Verbal working memory performance correlates with regional white matter structures in the fronto-parietal regions. Neuropsychologia 49, 3466–3473 (2011).
pubmed: 21906608
doi: 10.1016/j.neuropsychologia.2011.08.022
Barnea-Goraly, N. et al. White matter development during childhood and adolescence: a cross-sectional diffusion tensor imaging study. Cereb. Cortex 15, 1848–1854 (2005).
pubmed: 15758200
doi: 10.1093/cercor/bhi062
Le Bihan, N. et al. Diffusion tensor imaging: concepts and applications. J. Magn. Reson. Imaging 13, 534–546 (2001).
pubmed: 11276097
doi: 10.1002/jmri.1076
Greve D. N. An absolute beginner’s guide to surface-and voxel-based morphometric analysis. In Proc. Int. Soc. Mag. Reson. Med. (2011). https://cds.ismrm.org/protected/11MProceedings/files/ISMRM2011-8410.pdf .
Mechelli, A., Price, C. J., Friston, K. J. & Ashburner, J. Voxel-based morphometry of the human brain: methods and applications. Curr. Med. Imaging Rev. 1, 105–113 (2005).
doi: 10.2174/1573405054038726
Takeuchi, H. et al. Creative females have larger white matter structures: evidence from a large sample study. Hum. Brain Mapp. 38, 414–430 (2017).
pubmed: 27647672
doi: 10.1002/hbm.23369
Ashburner, J. & Friston, K. J. Voxel-based morphometry-the methods. Neuroimage 11, 805–821 (2000).
pubmed: 10860804
doi: 10.1006/nimg.2000.0582
Benjamini, Y., Krieger, A. M. & Yekutieli, D. Adaptive linear step-up procedures that control the false discovery rate. Biometrika 93, 491–507 (2006).
doi: 10.1093/biomet/93.3.491
Smith, S. M. & Nichols, T. E. Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. Neuroimage 44, 83–98 (2009).
pubmed: 18501637
doi: 10.1016/j.neuroimage.2008.03.061
Winkler, A. M., Ridgway, G. R., Douaud, G., Nichols, T. E. & Smith, S. M. Faster permutation inference in brain imaging. Neuroimage 141, 502–516 (2016).
pubmed: 27288322
pmcid: 5035139
doi: 10.1016/j.neuroimage.2016.05.068
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B (Methodol.) 57, 289–300 (1995).
Poline, J.-B., Worsley, K. J., Evans, A. C. & Friston, K. J. Combining spatial extent and peak intensity to test for activations in functional imaging. Neuroimage 5, 83–96 (1997).
pubmed: 9345540
doi: 10.1006/nimg.1996.0248
Silver, M., Montana, G. & Nichols, T. E. False positives in neuroimaging genetics using voxel-based morphometry data. Neuroimage 54, 992–1000 (2012).
doi: 10.1016/j.neuroimage.2010.08.049
Mohammadi, S., Freund, P., Feiweier, T., Curt, A. & Weiskopf, N. The impact of post-processing on spinal cord diffusion tensor imaging. Neuroimage 70, 377–385 (2013).
pubmed: 23298752
pmcid: 3605597
doi: 10.1016/j.neuroimage.2012.12.058
Takeuchi, H. et al. Effects of interaction between the BDNF Val66Met polymorphism and daily physical activity on mean diffusivity. Brain Imaging Behav. 14, 806–820 (2020).
pubmed: 30617785
doi: 10.1007/s11682-018-0025-8
Preacher, K. J. & Hayes, A. F. Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behav. Res. Methods 40, 879–891 (2008).
pubmed: 18697684
doi: 10.3758/BRM.40.3.879
Pike, N. Using false discovery rates for multiple comparisons in ecology and evolution. Methods Ecol. Evolution 2, 278–282 (2011).
doi: 10.1111/j.2041-210X.2010.00061.x