MTHFR (methylenetetrahydrofolate reductase: EC 1.5.1.20) SNPs (single-nucleotide polymorphisms) and homocysteine in patients referred for investigation of fertility.
DNA methylation
Fertility
Gametes
Gender prevalence
Homocysteine
MTHFR SNPs
Recurrent miscarriages
Journal
Journal of assisted reproduction and genetics
ISSN: 1573-7330
Titre abrégé: J Assist Reprod Genet
Pays: Netherlands
ID NLM: 9206495
Informations de publication
Date de publication:
Sep 2021
Sep 2021
Historique:
received:
02
03
2021
accepted:
18
04
2021
pubmed:
30
4
2021
medline:
3
2
2022
entrez:
29
4
2021
Statut:
ppublish
Résumé
MTHFR, one of the major enzymes in the folate cycle, is known to acquire single-nucleotide polymorphisms that significantly reduce its activity, resulting in an increase in circulating homocysteine. Methylation processes are of crucial importance in gametogenesis, involved in the regulation of imprinting and epigenetic tags on DNA and histones. We have retrospectively assessed the prevalence of MTHFR SNPs in a population consulting for infertility according to gender and studied the impact of the mutations on circulating homocysteine levels. More than 2900 patients having suffered at least two miscarriages (2 to 9) or two failed IVF/ICSI (2 to 10) attempts were included for analysis of MTHFR SNPs C677T and A1298C. Serum homocysteine levels were measured simultaneously. We observed no difference in the prevalence of different genetic backgrounds between men and women; only 15% of the patients were found to be wild type. More than 40% of the patients are either homozygous for one SNP or compound heterozygous carriers. As expected, the C677T SNP shows the greatest adverse effect on homocysteine accumulation. The impact of MTHFR SNPs on circulating homocysteine is different in men than in women. Determination of MTHFR SNPs in both men and women must be seriously advocated in the presence of long-standing infertility; male gametes, from MTHFR SNPs carriers, are not exempted from exerting a hazardous impact on fertility. Patients should be informed of the pleiotropic medical implications of these SNPs for their own health, as well as for the health of future children.
Identifiants
pubmed: 33914208
doi: 10.1007/s10815-021-02200-6
pii: 10.1007/s10815-021-02200-6
pmc: PMC8490548
doi:
Substances chimiques
Homocysteine
0LVT1QZ0BA
MTHFR protein, human
EC 1.5.1.20
Methylenetetrahydrofolate Reductase (NADPH2)
EC 1.5.1.20
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
2383-2389Informations de copyright
© 2021. The Author(s).
Références
Curr Opin Clin Nutr Metab Care. 2009 Nov;12(6):555-64
pubmed: 19726978
Life Sci. 1989;44(21):1601-9
pubmed: 2733543
Balkan J Med Genet. 2013 Jun;16(1):31-40
pubmed: 24265582
J Gynecol Obstet Hum Reprod. 2020 Jan;49(1):101622
pubmed: 31446167
Reprod Biomed Online. 2016 Dec;33(6):668-683
pubmed: 27742259
Environ Health Perspect. 2013 Feb;121(2):231-6
pubmed: 23151773
Hum Genet. 2016 May;135(5):555-568
pubmed: 27068821
Sci Rep. 2018 Mar 6;8(1):4096
pubmed: 29511242
Am J Hum Genet. 1998 May;62(5):1044-51
pubmed: 9545395
J Assist Reprod Genet. 2020 Aug;37(8):1807-1814
pubmed: 32767205
Br J Nutr. 2005 Nov;94(5):727-30
pubmed: 16277775
Int J Mol Sci. 2016 Oct 20;17(10):
pubmed: 27775595
Hum Reprod. 2008 Nov;23(11):2570-6
pubmed: 18664470
Biofactors. 2010 Jan-Feb;36(1):19-24
pubmed: 20091801
Proc Natl Acad Sci U S A. 2009 Sep 8;106(36):15424-9
pubmed: 19706381
PLoS One. 2019 Aug 19;14(8):e0216790
pubmed: 31425504
Hum Mol Genet. 2018 Apr 1;27(7):1123-1135
pubmed: 29360980
Nutr Rev. 2010 Feb;68(2):99-113
pubmed: 20137055
J Pediatr Genet. 2018 Sep;7(3):103-113
pubmed: 30105117
Arch Gynecol Obstet. 2016 Jun;293(6):1197-211
pubmed: 26530235
Med Hypotheses. 2011 Dec;77(6):1088-93
pubmed: 21963358
Nat Rev Genet. 2005 Mar;6(3):235-40
pubmed: 15738964
Andrology. 2016 Mar;4(2):345-60
pubmed: 26825875
J Reprod Infertil. 2015 Oct-Dec;16(4):193-8
pubmed: 27110516
J Nutr. 2006 Jan;136(1):189-94
pubmed: 16365081
Hum Mol Genet. 2007 Nov 1;16(21):2542-51
pubmed: 17636251
N Engl J Med. 2002 Feb 14;346(7):476-83
pubmed: 11844848
Int J Mol Sci. 2020 Dec 07;21(23):
pubmed: 33297303
Lancet. 2004 May 22;363(9422):1700-2
pubmed: 15158633
Medicine (Baltimore). 2019 Jan;98(2):e13998
pubmed: 30633186
Hum Reprod. 2009 May;24(5):1059-66
pubmed: 19221098
Mol Genet Metab. 2014 Sep-Oct;113(1-2):27-33
pubmed: 25087163
Am J Clin Nutr. 2004 Mar;79(3):473-8
pubmed: 14985224
Hum Reprod. 2009 Sep;24(9):2293-302
pubmed: 19443458
SAGE Open Med Case Rep. 2019 May 17;7:2050313X19850435
pubmed: 31205715
Fertil Steril. 2015 Dec;104(6):1388-97.e1-5
pubmed: 26361204
Gynecol Obstet Fertil Senol. 2020 May;48(5):422-427
pubmed: 32145452
BMC Public Health. 2009 Aug 18;9:295
pubmed: 19689788
Physiol Rev. 2016 Jan;96(1):55-97
pubmed: 26582516
Reprod Biomed Online. 2014 Jun;28(6):733-8
pubmed: 24746944
Hum Mol Genet. 2015 Nov 15;24(22):6301-13
pubmed: 26307085
J Assist Reprod Genet. 2018 Aug;35(8):1431-1435
pubmed: 29882091
Am J Hum Genet. 2000 Sep;67(3):623-30
pubmed: 10930360
Fertil Steril. 2010 Jun;94(1):130-7
pubmed: 19324355
PLoS One. 2015 Mar 20;10(3):e0121147
pubmed: 25793386
Am J Clin Nutr. 2000 Jul;72(1):22-9
pubmed: 10871556
J Perinat Med. 2013 Sep 1;41(5):469-83
pubmed: 23482308