The impact of susceptibility correction on diffusion metrics in adolescents.


Journal

Pediatric radiology
ISSN: 1432-1998
Titre abrégé: Pediatr Radiol
Pays: Germany
ID NLM: 0365332

Informations de publication

Date de publication:
Jul 2021
Historique:
received: 03 06 2020
accepted: 03 02 2021
revised: 16 09 2020
pubmed: 25 4 2021
medline: 18 11 2021
entrez: 24 4 2021
Statut: ppublish

Résumé

Diffusion tensor imaging is a widely used imaging method of brain white matter, but it is prone to imaging artifacts. The data corrections can affect the measured values. To explore the impact of susceptibility correction on diffusion metrics. A cohort of 27 healthy adolescents (18 boys, 9 girls, mean age 12.7 years) underwent 3-T MRI, and we collected two diffusion data sets (anterior-posterior). The data were processed both with and without susceptibility artifact correction. We derived fractional anisotropy, mean diffusivity and histogram data of fiber length distribution from both the corrected and uncorrected data, which were collected from the corpus callosum, corticospinal tract and cingulum bilaterally. Fractional anisotropy and mean diffusivity values significantly differed when comparing the pathways in all measured tracts. The fractional anisotropy values were lower and the mean diffusivity values higher in the susceptibility-corrected data than in the uncorrected data. We found a significant difference in total tract length in the corpus callosum and the corticospinal tract. This study indicates that susceptibility correction has a significant effect on measured fractional anisotropy, and on mean diffusivity values and tract lengths. To receive reliable and comparable results, the correction should be used systematically.

Sections du résumé

BACKGROUND BACKGROUND
Diffusion tensor imaging is a widely used imaging method of brain white matter, but it is prone to imaging artifacts. The data corrections can affect the measured values.
OBJECTIVE OBJECTIVE
To explore the impact of susceptibility correction on diffusion metrics.
MATERIALS AND METHODS METHODS
A cohort of 27 healthy adolescents (18 boys, 9 girls, mean age 12.7 years) underwent 3-T MRI, and we collected two diffusion data sets (anterior-posterior). The data were processed both with and without susceptibility artifact correction. We derived fractional anisotropy, mean diffusivity and histogram data of fiber length distribution from both the corrected and uncorrected data, which were collected from the corpus callosum, corticospinal tract and cingulum bilaterally.
RESULTS RESULTS
Fractional anisotropy and mean diffusivity values significantly differed when comparing the pathways in all measured tracts. The fractional anisotropy values were lower and the mean diffusivity values higher in the susceptibility-corrected data than in the uncorrected data. We found a significant difference in total tract length in the corpus callosum and the corticospinal tract.
CONCLUSION CONCLUSIONS
This study indicates that susceptibility correction has a significant effect on measured fractional anisotropy, and on mean diffusivity values and tract lengths. To receive reliable and comparable results, the correction should be used systematically.

Identifiants

pubmed: 33893847
doi: 10.1007/s00247-021-05000-3
pii: 10.1007/s00247-021-05000-3
pmc: PMC8266789
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1471-1480

Investigateurs

Annarilla Ahtola (A)
Mikael Ekblad (M)
Satu Ekblad (S)
Eeva Ekholm (E)
Linda Grönroos (L)
Leena Haataja (L)
Mira Huhtala (M)
Jere Jaakkola (J)
Eveliina Joensuu (E)
Max Karukivi (M)
Pentti Kero (P)
Riikka Korja (R)
Katri Lahti (K)
Helena Lapinleimu (H)
Liisa Lehtonen (L)
Tuomo Lehtonen (T)
Marika Leppänen (M)
Annika Lind (A)
Hanna Manninen (H)
Mari Koivisto (M)
Mira Mattson (M)
Jonna Maunu (J)
Petriina Munck (P)
Laura Määttänen (L)
Pekka Niemi (P)
Anna Nyman (A)
Pertti Palo (P)
Riitta Parkkola (R)
Liisi Ripatti (L)
Päivi Rautava (P)
Katriina Saarinen (K)
Tiina Saarinen (T)
Virva Saunavaara (V)
Sirkku Setänen (S)
Matti Sillanpää (M)
Suvi Stolt (S)
Päivi Tuomikoski-Koiranen (P)
Timo Tuovinen (T)
Karoliina Uusitalo (K)
Anniina Väliaho (A)
Milla Ylijoki (M)

Références

Magn Reson Med. 2019 Apr;81(4):2774-2787
pubmed: 30394561
Dev Cogn Neurosci. 2018 Oct;33:161-175
pubmed: 29229299
PLoS One. 2017 Oct 2;12(10):e0185647
pubmed: 28968429
Neuroimage. 2012 May 15;61(1):275-88
pubmed: 22401760
Hum Brain Mapp. 2010 Oct;31(10):1570-87
pubmed: 20143387
Med Image Comput Comput Assist Interv. 2008;11(Pt 2):321-9
pubmed: 18982621
Magn Reson Med. 2003 Nov;50(5):1077-88
pubmed: 14587019
Front Neurosci. 2012 Dec 05;6:171
pubmed: 23227001
Neuroimage. 2009 Mar;45(1 Suppl):S173-86
pubmed: 19059349
Magn Reson Imaging. 2010 Apr;28(3):451-4
pubmed: 20096524
Neuroimage. 2013 Jun;73:239-54
pubmed: 22846632
Dev Psychopathol. 2017 Aug;29(3):751-758
pubmed: 27297294
J Magn Reson Imaging. 2006 Sep;24(3):478-88
pubmed: 16897692
Dentomaxillofac Radiol. 2017 Aug;46(6):20170051
pubmed: 28452576
J Am Acad Child Adolesc Psychiatry. 2014 Mar;53(3):362-72.e1-2
pubmed: 24565363
Neuroimage Clin. 2016 Apr 12;11:539-547
pubmed: 27158586
J Am Acad Child Adolesc Psychiatry. 2015 Oct;54(10):859-67
pubmed: 26407496
J Comput Assist Tomogr. 1999 Nov-Dec;23(6):832-41
pubmed: 10589555
Mult Scler. 2016 Apr;22(5):620-7
pubmed: 26199355
Comput Med Imaging Graph. 1990 Nov-Dec;14(6):409-13
pubmed: 2272012
Acta Paediatr. 2010 Mar;99(3):359-66
pubmed: 19912142
Magn Reson Med. 1995 Jul;34(1):65-73
pubmed: 7674900
Front Neuroinform. 2014 Jan 30;8:4
pubmed: 24523693
Hum Brain Mapp. 2002 Nov;17(3):143-55
pubmed: 12391568
Hum Brain Mapp. 1999;8(2-3):80-5
pubmed: 10524596
Neuroimage. 2019 Nov 15;202:116091
pubmed: 31415884
Neuroimage. 2003 Oct;20(2):870-88
pubmed: 14568458
Magn Reson Med. 2004 Apr;51(4):807-15
pubmed: 15065255
Neuroimage. 2007 Jan 1;34(1):144-55
pubmed: 17070705
Hum Brain Mapp. 2019 Oct 1;40(14):4146-4162
pubmed: 31173439
Neuroimage. 2006 Jul 1;31(3):968-80
pubmed: 16530430
Am J Psychiatry. 2018 Dec 1;175(12):1255-1264
pubmed: 30111185
Neuroimage. 2004;23 Suppl 1:S208-19
pubmed: 15501092
Magn Reson Med. 2010 Aug;64(2):382-90
pubmed: 20665782
Med Image Anal. 2007 Dec;11(6):588-603
pubmed: 17664081
Acta Paediatr. 2020 Apr;109(4):738-745
pubmed: 31505069
Neuroimage. 2018 Jun;173:275-286
pubmed: 29486323
NMR Biomed. 2019 Apr;32(4):e3778
pubmed: 28886240
Magn Reson Imaging. 2008 Nov;26(9):1294-302
pubmed: 18499384
Magn Reson Imaging. 1985;3(4):329-43
pubmed: 4088009
Hum Brain Mapp. 2016 Dec;37(12):4405-4424
pubmed: 27436169
IEEE Trans Med Imaging. 2000 Feb;19(2):80-93
pubmed: 10784280
Dent Mater. 2008 Jun;24(6):715-23
pubmed: 17884157
Neuroimage. 2012 Mar;60(1):340-52
pubmed: 22178809
Neuroimage. 2012 Aug 15;62(2):774-81
pubmed: 22248573

Auteurs

Katri Lahti (K)

Department of Pediatric Neurology, University of Turku and Turku University Hospital, P.O. Box 52, 20521, Turku, Finland. kaalah@utu.fi.
Department of Adolescent Psychiatry, Turku University Hospital, Turku, Finland. kaalah@utu.fi.

Riitta Parkkola (R)

Department of Radiology, University of Turku and Turku University Hospital, Turku, Finland.

Päivi Jääsaari (P)

Department of Oral and Maxillofacial Diseases, Turku University Hospital, Turku, Finland.

Leena Haataja (L)

Children's Hospital, and Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.

Virva Saunavaara (V)

Department of Medical Physics, Turku University Hospital, Turku, Finland.
Turku PET Centre, Turku University Hospital, Turku, Finland.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH