Augmented reality in anesthesia, pain medicine and critical care: a narrative review.
Anesthesia
Augmented reality
Critical care
Pain medicine
Journal
Journal of clinical monitoring and computing
ISSN: 1573-2614
Titre abrégé: J Clin Monit Comput
Pays: Netherlands
ID NLM: 9806357
Informations de publication
Date de publication:
02 2022
02 2022
Historique:
received:
15
09
2020
accepted:
05
04
2021
pubmed:
18
4
2021
medline:
7
5
2022
entrez:
17
4
2021
Statut:
ppublish
Résumé
Augmented reality (AR) is the integration of computer-generated information with the user's environment in real time. AR is used in many industries, including healthcare, where it has gained significant popularity. Recent strides in hardware and software engineering have reduced the cost of AR, while significantly improving the experience for users and developers. One of the first applications of AR technology in perioperative medicine has been in the identification of anatomical structures for regional blocks and peripheral or central vascular access. AR has also been implemented in pediatric care to reduce periprocedural anxiety. In this narrative review, we summarize the current role of AR in anesthesiology, pain medicine, and critical care.
Identifiants
pubmed: 33864581
doi: 10.1007/s10877-021-00705-0
pii: 10.1007/s10877-021-00705-0
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
33-39Subventions
Organisme : NIH HHS
ID : R42DA050365
Pays : United States
Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer Nature B.V.
Références
Berryman DR. Augmented reality: a review. Med Ref Serv Q. 2012;31(2):212–8. https://doi.org/10.1080/02763869.2012.670604 .
doi: 10.1080/02763869.2012.670604
pubmed: 22559183
Tait AR, Connally L, Doshi A, Johnson A, Skrzpek A, Grimes M, et al. Development and evaluation of an augmented reality education program for pediatric research. J Clin Transl Res. 2020;5(3):96–101.
pubmed: 32617424
pmcid: 7326265
Mahmood F, Mahmood E, Dorfman RG, Mitchell J, Mahmood F-U, Jones SB, et al. Augmented reality and ultrasound education: initial experience. J Cardiothorac Vasc Anesth. 2018;32(3):1363–7. https://doi.org/10.1053/j.jvca.2017.12.006 .
doi: 10.1053/j.jvca.2017.12.006
pubmed: 29452879
Davis L, Ha Y, Frolich S, Martin G, Meyer C, Pettitt B, et al. Augmented reality and training for airway management procedures. Stud Health Technol Inform. 2002;85:121–6.
pubmed: 15458071
Ameri G, Rankin A, Baxter JSH, Moore J, Ganapathy S, Peters TM, et al. Development and evaluation of an augmented reality ultrasound guidance system for spinal anesthesia: preliminary Results. Ultrasound Med Biol. 2019;45(10):2736–46. https://doi.org/10.1016/j.ultrasmedbio.2019.04.026 .
doi: 10.1016/j.ultrasmedbio.2019.04.026
pubmed: 31281009
Liu D, Jenkins SA, Sanderson PM. Patient monitoring with head-mounted displays. Curr Opin Anaesthesiol. 2009;22(6):796–803. https://doi.org/10.1097/ACO.0b013e32833269c1 .
doi: 10.1097/ACO.0b013e32833269c1
pubmed: 19770643
Libaw JS, Sinskey JL. Use of augmented reality during inhaled induction of general anesthesia in 3 pediatric patients. A A Practice. 2020. https://doi.org/10.1213/xaa.0000000000001219 .
doi: 10.1213/xaa.0000000000001219
pubmed: 32539270
Carmigniani J, Furht B, Anisetti M, Ceravolo P, Damiani E, Ivkovic M. Augmented reality technologies, systems and applications. Multimed Tools Appl. 2010;51(1):341–77. https://doi.org/10.1007/s11042-010-0660-6 .
doi: 10.1007/s11042-010-0660-6
Li WHC, Chung JOK, Ho KY, Kwok BMC. Play interventions to reduce anxiety and negative emotions in hospitalized children. BMC Pediatrics. 2016. https://doi.org/10.1186/s12887-016-0570-5 .
doi: 10.1186/s12887-016-0570-5
pubmed: 27938350
pmcid: 5148912
Eijlers R, Utens EMWJ, Staals LM, de Nijs PFA, Berghmans JM, Wijnen RMH, et al. Systematic review and meta-analysis of virtual reality in pediatrics. Anesth Analg. 2019;129(5):1344–53. https://doi.org/10.1213/ane.0000000000004165 .
doi: 10.1213/ane.0000000000004165
pubmed: 31136330
pmcid: 6791566
Davidson AJ, Shrivastava PP, Jamsen K, Huang GH, Czarnecki C, Gibson MA, et al. Risk factors for anxiety at induction of anesthesia in children: a prospective cohort study. Pediatr Anesth. 2006;16(9):919–27. https://doi.org/10.1111/j.1460-9592.2006.01904.x .
doi: 10.1111/j.1460-9592.2006.01904.x
Jooma Z, Perrie H, Scribante J, Kleyenstuber T. Emergence delirium in children undergoing dental surgery under general anesthesia. Pediatr Anesth. 2020. https://doi.org/10.1111/pan.13937 .
doi: 10.1111/pan.13937
Rodriguez S, Munshey F, Caruso TJ. Augmented reality for intravenous access in an autistic child with difficult access. Pediatr Anesth. 2018;28(6):569–70. https://doi.org/10.1111/pan.13395 .
doi: 10.1111/pan.13395
Cata JP, Elsharkawy H. Is flying blind still an option for neuraxial blocks? Minerva Anestesiol. 2017;83(5):443–5. https://doi.org/10.23736/S0375-9393.17.11831-6 .
doi: 10.23736/S0375-9393.17.11831-6
pubmed: 28192897
Ambulkar R, Patil V, Doctor J, Desai M, Shetty N, Agarwal V. Accuracy of ultrasound imaging versus manual palpation for locating the intervertebral level. J Anaesthesiol Clin Pharmacol. 2017. https://doi.org/10.4103/joacp.JOACP_285_16 .
doi: 10.4103/joacp.JOACP_285_16
pubmed: 29416241
pmcid: 5791262
Brinkmann S, Germain G, Sawka A, Tang R, Vaghadia H. Is there a place for ultrasound in neuraxial anesthesia? Imaging Med. 2013;5(2):177–86. https://doi.org/10.2217/iim.13.14 .
doi: 10.2217/iim.13.14
Chin KJ, Karmakar MK, Peng P. Ultrasonography of the adult thoracic and lumbar spine for central neuraxial blockade. Anesthesiology. 2011;114(6):1459–85. https://doi.org/10.1097/ALN.0b013e318210f9f8 .
doi: 10.1097/ALN.0b013e318210f9f8
pubmed: 21422997
Ashab HA, Lessoway VA, Khallaghi S, Cheng A, Rohling R, Abolmaesumi P. AREA: An augmented reality system for epidural anaesthesia. 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society2012. p. 2659–63.
Kerby B, Rohling R, Nair V, Abolmaesumi P. Automatic identification of lumbar level with ultrasound. 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society2008. p. 2980–3
Al-Deen Ashab H, Lessoway VA, Khallaghi S, Cheng A, Rohling R, Abolmaesumi P. An augmented reality system for epidural anesthesia (AREA): prepuncture identification of vertebrae. IEEE Trans Biomed Eng. 2013;60(9):2636–44. https://doi.org/10.1109/tbme.2013.2262279 .
doi: 10.1109/tbme.2013.2262279
pubmed: 23674416
Scholten HJ, Pourtaherian A, Mihajlovic N, Korsten HHM, A. Bouwman R, . Improving needle tip identification during ultrasound-guided procedures in anaesthetic practice. Anaesthesia. 2017;72(7):889–904. https://doi.org/10.1111/anae.13921 .
doi: 10.1111/anae.13921
pubmed: 28542716
Clarke C, Moore J, Wedlake C, Lee D, Ganapathy S, Salbalbal M, et al. Virtual reality imaging with real-time ultrasound guidance for facet joint injection. Anesth Analg. 2010;110(5):1461–3. https://doi.org/10.1213/ANE.0b013e3181d7850f .
doi: 10.1213/ANE.0b013e3181d7850f
pubmed: 20418305
Moore J, Clarke C, Bainbridge D, Wedlake C, Wiles A, Pace D, et al. Image Guidance for Spinal Facet Injections Using Tracked Ultrasound. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2009. Lecture Notes in Computer Science, 2009. p. 516-23.
Agten CA, Dennler C, Rosskopf AB, Jaberg L, Pfirrmann CWA, Farshad M. Augmented reality-guided lumbar facet joint injections. Invest Radiol. 2018;53(8):495–8. https://doi.org/10.1097/rli.0000000000000478 .
doi: 10.1097/rli.0000000000000478
pubmed: 29742535
Rothgangel A, Braun S, Winkens B, Beurskens A, Smeets R. Traditional and augmented reality mirror therapy for patients with chronic phantom limb pain (PACT study): results of a three-group, multicentre single-blind randomized controlled trial. Clin Rehabil. 2018;32(12):1591–608. https://doi.org/10.1177/0269215518785948 .
doi: 10.1177/0269215518785948
pubmed: 30012007
Mott J, Bucolo S, Cuttle L, Mill J, Hilder M, Miller K, et al. The efficacy of an augmented virtual reality system to alleviate pain in children undergoing burns dressing changes: a randomised controlled trial. Burns. 2008;34(6):803–8. https://doi.org/10.1016/j.burns.2007.10.010 .
doi: 10.1016/j.burns.2007.10.010
pubmed: 18325675
Drake-Brockman TFE, Datta A, von Ungern-Sternberg BS, Lerman J. Patient monitoring with google glass: a pilot study of a novel monitoring technology. Pediatr Anesth. 2016;26(5):539–46. https://doi.org/10.1111/pan.12879 .
doi: 10.1111/pan.12879
Ai D, Yang J, Fan J, Zhao Y, Song X, Shen J, et al. Augmented reality based real-time subcutaneous vein imaging system. Biomed Opt Express. 2016;7(7):2565–85. https://doi.org/10.1364/boe.7.002565 .
doi: 10.1364/boe.7.002565
pubmed: 27446690
pmcid: 4948614
Guillon P, Makhloufi M, Baillie S, Roucoulet C, Dolimier E, Masquelier AM. Prospective evaluation of venous access difficulty and a near-infrared vein visualizer at four French haemophilia treatment centres. Haemophilia. 2015;21(1):21–6. https://doi.org/10.1111/hae.12513 .
doi: 10.1111/hae.12513
pubmed: 25335191
Alismail A, Thomas J, Daher NS, Cohen A, Almutairi W, Terry MH, et al. Augmented reality glasses improve adherence to evidence-based intubation practice. Adv Med Educ Pract. 2019;10:279–86. https://doi.org/10.2147/AMEP.S201640 .
doi: 10.2147/AMEP.S201640
pubmed: 31191075
pmcid: 6511613
Gan A, Cohen A, Tan L. Augmented reality-assisted percutaneous dilatational tracheostomy in critically ill patients with chronic respiratory disease. J Intensive Care Med. 2019;34(2):153–5. https://doi.org/10.1177/0885066618791952 .
doi: 10.1177/0885066618791952
pubmed: 30079789
Leibowitz A, Oren-Grinberg A, Matyal R. Ultrasound guidance for central venous access: current evidence and clinical recommendations. J Intensive Care Med. 2019;35(3):303–21. https://doi.org/10.1177/0885066619868164 .
doi: 10.1177/0885066619868164
pubmed: 31387439
Rochlen LR, Levine R, Tait AR. First-person point-of-view–augmented reality for central line insertion training. Simul Healthc J Soc Simul Healthc. 2016. https://doi.org/10.1097/sih.0000000000000185 .
doi: 10.1097/sih.0000000000000185