Identification of novel inner membrane complex and apical annuli proteins of the malaria parasite Plasmodium falciparum.
Journal
Cellular microbiology
ISSN: 1462-5822
Titre abrégé: Cell Microbiol
Pays: India
ID NLM: 100883691
Informations de publication
Date de publication:
09 2021
09 2021
Historique:
revised:
29
03
2021
received:
31
01
2021
accepted:
05
04
2021
pubmed:
9
4
2021
medline:
14
1
2022
entrez:
8
4
2021
Statut:
ppublish
Résumé
The inner membrane complex (IMC) is a defining feature of apicomplexan parasites, which confers stability and shape to the cell, functions as a scaffolding compartment during the formation of daughter cells and plays an important role in motility and invasion during different life cycle stages of these single-celled organisms. To explore the IMC proteome of the malaria parasite Plasmodium falciparum we applied a proximity-dependent biotin identification (BioID)-based proteomics approach, using the established IMC marker protein Photosensitized INA-Labelled protein 1 (PhIL1) as bait in asexual blood-stage parasites. Subsequent mass spectrometry-based peptide identification revealed enrichment of 12 known IMC proteins and several uncharacterized candidate proteins. We validated nine of these previously uncharacterized proteins by endogenous GFP-tagging. Six of these represent new IMC proteins, while three proteins have a distinct apical localization that most likely represents structures described as apical annuli in Toxoplasma gondii. Additionally, various Kelch13 interacting candidates were identified, suggesting an association of the Kelch13 compartment and the IMC in schizont and merozoite stages. This work extends the number of validated IMC proteins in the malaria parasite and reveals for the first time the existence of apical annuli proteins in P. falciparum. Additionally, it provides evidence for a spatial association between the Kelch13 compartment and the IMC in late blood-stage parasites.
Substances chimiques
Protozoan Proteins
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e13341Subventions
Organisme : Boehringer Ingelheim Stiftung
Organisme : CSSB Seed grant
ID : KIF 2019/002
Organisme : Deutsche Forschungsgemeinschaft
ID : BA 5213/3-1
Organisme : Jürgen Manchot Stiftung
Organisme : Landesforschungsförderung Hamburg
ID : LFF FV-69
Organisme : Partnership of Universität Hamburg and DESY (PIER)
ID : PIF-2018-87
Informations de copyright
© 2021 The Authors. Cellular Microbiology published by John Wiley & Sons Ltd.
Références
Abdi, A., Eschenlauer, S., Reininger, L., & Doerig, C. (2010). SAM domain-dependent activity of PfTKL3, an essential tyrosine kinase-like kinase of the human malaria parasite Plasmodium falciparum. Cellular and Molecular Life Sciences, 67, 3355-3369.
Al-Khattaf, F. S., Tremp, A. Z., & Dessens, J. T. (2015). Plasmodium alveolins possess distinct but structurally and functionally related multi-repeat domains. Parasitology Research, 114, 631-639.
Al-Khattaf, F. S., Tremp, A. Z., El-Houderi, A., & Dessens, J. T. (2017). The plasmodium alveolin IMC1a is stabilised by its terminal cysteine motifs and facilitates sporozoite morphogenesis and infectivity in a dose-dependent manner. Molecular and Biochemical Parasitology, 211, 48-56.
Allen, R. D. (1971). Fine structure of membranous and microfibrillar systems in the cortex of Paramecium caudatum. The Journal of Cell Biology, 49, 1-20.
Almagro Armenteros J. J., Tsirigos K. D., Sønderby C. K., Petersen T. N., Winther O., Brunak S., … Nielsen H. (2019). SignalP 5.0 improves signal peptide predictions using deep neural networks. Nature Biotechnology, 37(4), 420-423. https://doi.org/10.1038/s41587-019-0036-z.
Anderson-White, B. R., Ivey, F. D., Cheng, K., Szatanek, T., Lorestani, A., Beckers, C. J., … Gubbels, M. J. (2011). A family of intermediate filament-like proteins is sequentially assembled into the cytoskeleton of toxoplasma gondii. Cellular Microbiology, 13, 18-31.
Ariey, F., Witkowski, B., Amaratunga, C., Beghain, J., Langlois, A. C., Khim, N., … Ménard, D. (2014). A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature, 505, 50-55.
Aurrecoechea, C., Brestelli, J., Brunk, B. P., Dommer, J., Fischer, S., Gajria, B., … Wang, H. (2009). PlasmoDB: A functional genomic database for malaria parasites. Nucleic Acids Research, 37, D539-D543.
Bachmann, A., Scholz, J. A. M., Janßen, M., Klinkert, M.-Q., Tannich, E., Bruchhaus, I., & Petter, M. (2015). A comparative study of the localization and membrane topology of members of the RIFIN, STEVOR and PfMC-2TM protein families in Plasmodium falciparum-infected erythrocytes. Malaria Journal, 14, 274.
Bane, K. S., Lepper, S., Kehrer, J., Sattler, J. M., Singer, M., Reinig, M., … Frischknecht, F. (2016). The Actin filament-binding protein Coronin regulates motility in Plasmodium sporozoites. PLoS Pathogens, 12, e1005710.
Bannister, L. H., Hopkins, J. M., Fowler, R. E., Krishna, S., & Mitchell, G. H. (2000). A brief illustrated guide to the ultrastructure of Plasmodium falciparum asexual blood stages. Parasitology Today, 16, 427-433.
Barkhuff, W. D., Gilk, S. D., Whitmarsh, R., Tilley, L. D., Hunter, C., & Ward, G. E. (2011). Targeted disruption of TgPhiL1 in toxoplasma gondii results in altered parasite morphology and fitness. PLoS One, 6, e23977.
Barylyuk, K., Koreny, L., Ke, H., Butterworth, S., Crook, O. M., Lassadi, I., … Waller, R. F. (2020). A comprehensive subcellular atlas of the toxoplasma proteome via hyperLOPIT provides spatial context for protein functions. Cell Host & Microbe, 28, 752-766.e9.
Baum, J., Gilberger, T. W., Frischknecht, F., & Meissner, M. (2008). Host-cell invasion by malaria parasites: Insights from plasmodium and toxoplasma. Trends in Parasitology, 24, 557-563.
Baum, J., Richard, D., Healer, J., Rug, M., Krnajski, Z., Gilberger, T. W., … Cowman, A. F. (2006). A conserved molecular motor drives cell invasion and gliding motility across malaria life cycle stages and other apicomplexan parasites. The Journal of Biological Chemistry, 281, 5197-5208.
Beck, J. R., Rodriguez-Fernandez, I. A., Cruz de Leon, J., Huynh, M.-H., Carruthers, V. B., Morrissette, N. S., & Bradley, P. J. (2010). A novel family of toxoplasma IMC proteins displays a hierarchical organization and functions in coordinating parasite division. PLoS Pathogens, 6, e1001094.
Bertiaux, E., Balestra, A. C., Bournonville, L., Louvel, V., Maco, B., Soldati-Favre, D., … Hamel, V. (2021). Expansion microscopy provides new insights into the cytoskeleton of malaria parasites including the conservation of a conoid. PLoS Biology, 19, e3001020.
Birnbaum, J., Flemming, S., Reichard, N., Soares, A. B., Mesén-Ramírez, P., Jonscher, E., … Spielmann, T. (2017). A genetic system to study Plasmodium falciparum protein function. Nature Methods, 14, 450-456.
Birnbaum, J., Scharf, S., Schmidt, S., Jonscher, E., Hoeijmakers, W. A. M., Flemming, S., … Spielmann, T. (2020). A Kelch13-defined endocytosis pathway mediates artemisinin resistance in malaria parasites. Science, 367, 51-59.
Bisio, H., Chaabene, R. B., Sabitzki, R., Maco, B., Baptiste Marq, J., Gilberger, T. W., … Soldati-Favre, D. (2020). The zip code of vesicle trafficking in apicomplexa: Sec1/munc18 and snare proteins. MBio, 11, 1-21.
Blackman, M. J., & Bannister, L. H. (2001). Apical organelles of Apicomplexa: Biology and isolation by subcellular fractionation. Molecular and Biochemical Parasitology, 117, 11-25.
Boucher, M. J., Ghosh, S., Zhang, L., Lal, A., Jang, S. W., Ju, A., … Yeh, E. (2018). Integrative proteomics and bioinformatic prediction enable a high-confidence apicoplast proteome in malaria parasites. PLoS Biology, 16, e2005895.
Bullen, H. E., Charnaud, S. C., Kalanon, M., Riglar, D. T., Dekiwadia, C., Kangwanrangsan, N., … Gilson, P. R. (2012). Biosynthesis, localization, and macromolecular arrangement of the Plasmodium falciparum translocon of exported proteins (PTEX). The Journal of Biological Chemistry, 287, 7871-7884.
Bullen, H. E., Tonkin, C. J., O'Donnell, R. A., Tham, W. H., Papenfuss, A. T., Gould, S., … Gilson, P. R. (2009). A novel family of apicomplexan glideosome-associated proteins with an inner membrane-anchoring role. The Journal of Biological Chemistry, 284, 25353-25363.
Burda, P.-C., Crosskey, T., Lauk, K., Zurborg, A., Söhnchen, C., Liffner, B., … Gilberger, T. W. (2020). Structure-based identification and functional characterization of a Lipocalin in the malaria parasite Plasmodium falciparum. Cell Reports, 31, 107817.
Bushell, E., Gomes, A. R., Sanderson, T., Anar, B., Girling, G., Herd, C., … Billker, O. (2017). Functional profiling of a plasmodium genome reveals an abundance of essential genes. Cell, 170, 260-272.e8.
Cabrera, A., Herrmann, S., Warszta, D., Santos, J. M., John Peter, A. T., Kono, M., … Gilberger, T. W. (2012). Dissection of minimal sequence requirements for Rhoptry membrane targeting in the malaria parasite. Traffic, 13, 1335-1350.
Campelo Morillo, R., Tong, X., Xie, W., Lenz, T., Batugedara, G., Tabassum, N., … Kafsack, B. F. (2020). Homeodomain protein 1 is an essential regulator of gene expression during sexual differentiation of malaria parasites. bioRxiv, 2020.10.26.352583.
Cavalier-Smith, T. (1993). Kingdom protozoa and its 18 phyla. Microbiological Reviews, 57, 953-994.
Chen, A. L., Kim, E. W., Toh, J. Y., Vashisht, A. A., Rashoff, A. Q., Van, C., … Bradley, B. J. (2015). Novel components of the toxoplasma inner membrane complex revealed by BioID. MBio, 6, e02357.
Chen, A. L., Moon, A. S., Bell, H. N., Huang, A. S., Vashisht, A. A., Toh, J. Y. (2017). Novel insights into the composition and function of the toxoplasma IMC sutures. Cellular Microbiology, 19(4), e12678
Collins, C. R., Hackett, F., Strath, M., Penzo, M., Withers-Martinez, C., Baker, D. A., & Blackman, M. J. (2013). Malaria parasite cGMP-dependent protein kinase regulates blood stage Merozoite secretory organelle discharge and egress. PLoS Pathogens, 9, e1003344.
Dearnley, M. K., Yeoman, J. A., Hanssen, E., Kenny, S., Turnbull, L., Whitchurch, C. B., … Dixon, M. W. A. (2012). Origin, composition, organization and function of the inner membrane complex of Plasmodium falciparum gametocytes. Journal of Cell Science, 125, 2053-2063.
Engelberg, K., Chen, C. T., Bechtel, T., Sánchez Guzmán, V., Drozda, A. A., Chavan, S., … Gubbels, M. J. (2019). The apical annuli of toxoplasma gondii are composed of coiled-coil and signalling proteins embedded in the inner membrane complex sutures. Cellular Microbiology, 22, e13112.
Ferguson, D. J. P., Sahoo, N., Pinches, R. A., Bumstead, J. M., Tomley, F. M., & Gubbels, M. J. (2008). MORN1 has a conserved role in asexual and sexual development across the Apicomplexa. Eukaryotic Cell, 7, 698-711.
Ferreira, J. L., Heincke, D., Wichers, J. S., Liffner, B., Wilson, D. W., & Gilberger, T.-W. (2021). The dynamic roles of the inner membrane complex in the multiple stages of the malaria parasite. Frontiers in Cellular and Infection Microbiology, 10, 841.
Fowler, R. E., Fookes, R. E., Lavin, F., Bannister, L. H., & Mitchell, G. H. (1998). Microtubules in Plasmodium falciparum merozoites and their importance for invasion of erythrocytes. Parasitology, 117, 425-433.
Franken, H., Mathieson, T., Childs, D., Sweetman, G. M. A., Werner, T., Tögel, I., … Savitski, M. M. (2015). Thermal proteome profiling for unbiased identification of direct and indirect drug targets using multiplexed quantitative mass spectrometry. Nature Protocols, 10, 1567-1593.
Gao, H., Yang, Z., Wang, X., Qian, P., Hong, R., Chen, X., … Yuan, J. (2018). ISP1-anchored polarization of GCβ/CDC50A complex initiates malaria Ookinete gliding motility. Current Biology, 28, 2763-2776.e6.
Gaskins, E., Gilk, S., DeVore, N., Mann, T., Ward, G., & Beckers, C. (2004). Identification of the membrane receptor of a class XIV myosin in toxoplasma gondii. The Journal of Cell Biology, 165, 383-393.
Geiger, M., Brown, C., Wichers, J. S., Strauss, J., Lill, A., Thuenauer, R., … Gilberger, T. W. (2020). Structural insights into PfARO and characterization of its interaction with PfAIP. Journal of Molecular Biology, 432, 878-896.
Gilk, S. D., Raviv, Y., Hu, K., Murray, J. M., Beckers, C. J. M., & Ward, G. E. (2006). Identification of PhIL1, a novel cytoskeletal protein of the toxoplasma gondii pellicle, through photosensitized labeling with 5-[ 125 I]Iodonaphthalene-1-Azide. Eukaryotic Cell, 5, 1622-1634.
Gnädig, N. F., Stokes, B. H., Edwards, R. L., Kalantarov, G. F., Heimsch, K. C., Kuderjavy, M., … Fidock, D. A. (2020). Insights into the intracellular localization, protein associations and artemisinin resistance properties of Plasmodium falciparum K13. PLoS Pathogens, 16, e1008482.
Gould, S. B., Kraft, L. G. K., Van Dooren, G. G., Goodman, C. D., Ford, K. L., Cassin, A. M., … Waller, R. F. (2011). Ciliate pellicular proteome identifies novel protein families with characteristic repeat motifs that are common to alveolates. Molecular Biology and Evolution, 28, 1319-1331.
Gould, S. B., Tham, W.-H. H., Cowman, A. F., McFadden, G. I., & Waller, R. F. (2008). Alveolins, a new family of cortical proteins that define the protist infrakingdom Alveolata. Molecular Biology and Evolution, 25, 1219-1230.
Green, J. L., Wall, R. J., Vahokoski, J., Yusuf, N. A., Mohd Ridzuan, M. A., Stanway, R. R., … Holder, A. A. (2017). Compositional and expression analyses of the glideosome during the plasmodium life cycle reveal an additional myosin light chain required for maximum motility. The Journal of Biological Chemistry, 292, 17857-17875.
Grüring, C., & Spielmann, T. (2012). Imaging of live malaria blood stage parasites. Methods in Enzymology, 506, 81-92.
Gubbels, M. J., Vaishnava, S., Boot, N., Dubremetz, J. F., & Striepen, B. (2006). A MORN-repeat protein is a dynamic component of the toxoplasma gondii cell division apparatus. Journal of Cell Science, 119, 2236-2245.
Harding, C. R., & Frischknecht, F. (2020). The riveting cellular structures of Apicomplexan parasites. Trends in Parasitology, 36, 979-991.
Healer, J., Crawford, S., Ralph, S., McFadden, G., & Cowman, A. F. (2002). Independent translocation of two micronemal proteins in developing Plasmodium falciparum merozoites. Infection and Immunity, 70, 5751-5758.
Heiber, A., & Spielmann, T. (2014). Preparation of parasite protein extracts and Western blot analysis. Bio-Protocol, 4, e1136.
Hortua Triana, M. A., Márquez-Nogueras, K. M., Chang, L., Stasic, A. J., Li, C., Spiegel, K. A., … Moreno, S. N. J. (2018). Tagging of weakly expressed toxoplasma gondii calcium-related genes with high-affinity tags. The Journal of Eukaryotic Microbiology, 65, 709-721.
Hu, G., Cabrera, A., Kono, M., Mok, S., Chaal, B. K., Haase, S., … Bozdech, Z. (2010). Transcriptional profiling of growth perturbations of the human malaria parasite Plasmodium falciparum. Nature Biotechnology, 28, 91-98.
Hu, K. (2008). Organizational changes of the daughter basal complex during the parasite replication of toxoplasma gondii. PLoS Pathogens, 4, 108-121.
Hu, K., Johnson, J., Florens, L., Fraunholz, M., Suravajjala, S., DiLullo, C., … Murray, J. M. (2006). Cytoskeletal components of an invasion machine - the apical complex of toxoplasma gondii. PLoS Pathogens, 2, 121-138.
Ito, D., Takashima, E., Yamasaki, T., Hatano, S., Hasegawa, T., Miura, K., … Tsuboi, T. (2019). Antibodies against a Plasmodium falciparum RON12 inhibit merozoite invasion into erythrocytes. Parasitology International, 68, 87-91.
Jones, M. L., Kitson, E. L., & Rayner, J. C. (2006). Plasmodium falciparum erythrocyte invasion: A conserved myosin associated complex. Molecular and Biochemical Parasitology, 147, 74-84.
Jonscher, E., Flemming, S., Schmitt, M., Sabitzki, R., Reichard, N., Birnbaum, J., … Spielmann, T. (2019). PfVPS45 is required for host cell cytosol uptake by malaria blood stage parasites. Cell Host & Microbe, 25, 166-173.e5.
Keeley, A., & Soldati, D. (2004). The glideosome: A molecular machine powering motility and host-cell invasion by Apicomplexa. Trends in Cell Biology, 14, 528-532.
Kehrer, J., Frischknecht, F., & Mair, G. R. (2016). Proteomic analysis of the plasmodium berghei gametocyte egressome and vesicular bioid of osmiophilic body proteins identifies merozoite trap-like protein (MTRAP) as an essential factor for parasite transmission. Molecular & Cellular Proteomics, 15, 2852-2862.
Kehrer, J., Ricken, D., Strauss, L., Pietsch, E., Heinze, J. M., & Frischknecht, F. (2020). APEX-based proximity labeling in plasmodium identifies a membrane protein with dual functions during mosquito infection 2 3. bioRxiv, 2020.09.29.318857.
Khater, E. I., Sinden, R. E., & Dessens, J. T. (2004). A malaria membrane skeletal protein is essential for normal morphogenesis, motility, and infectivity of sporozoites. The Journal of Cell Biology, 167, 425-432.
Khosh-Naucke, M., Becker, J., Mesén-Ramírez, P., Kiani, P., Birnbaum, J., Fröhlke, U., … Spielmann, T. (2018). Identification of novel parasitophorous vacuole proteins in P. falciparum parasites using BioID. International Journal of Medical Microbiology, 308, 13-24.
Knuepfer, E., Suleyman, O., Dluzewski, A. R., Straschil, U., O'Keeffe, A. H., Ogun, S. A., … Holder, A. A. (2014). RON12, a novel plasmodium-specific rhoptry neck protein important for parasite proliferation. Cellular Microbiology, 16, 657-672.
Kono, M., Heincke, D., Wilcke, L., Wong, T. W. Y., Bruns, C., Herrmann, S., … Gilberger, T. W. (2016). Pellicle formation in the malaria parasite. Journal of Cell Science, 129, 673-680.
Kono, M., Herrmann, S., Loughran, N. B., Cabrera, A., Engelberg, K., Lehmann, C., … Gilberger, T. W. (2012). Evolution and architecture of the inner membrane complex in asexual and sexual stages of the malaria parasite. Molecular Biology and Evolution, 29, 2113-2132.
Kono, M., Prusty, D., Parkinson, J., & Gilberger, T. W. (2013). The apicomplexan inner membrane complex. Frontiers in Bioscience, 18, 982-992.
Koreny, L., Zeeshan, M., Barylyuk, K., Tromer, E. C., van Hooff, J. J. E., Brady, D., … Waller, R. F. (2021). Molecular characterization of the conoid complex in toxoplasma reveals its conservation in all apicomplexans, including plasmodium species. PLoS Biology, 19, e3001081.
Lambros, C., & Vanderberg, J. P. (1979). Synchronization of Plasmodium falciparum Erythrocytic stages in culture. The Journal of Parasitology, 65, 418.
Lee, R. E., & Kugrens, P. (1992). Relationship between the flagellates and the ciliates. Microbiological Reviews, 56, 529-542.
Lentini, G., Dubois, D. J., Maco, B., Soldati-Favre, D., & Frénal, K. (2019). The roles of Centrin 2 and dynein light chain 8a in apical secretory organelles discharge of toxoplasma gondii. Traffic, 20, 583-600.
Leung, J. M., Liu, J., Wetzel, L. A., & Hu, K. (2019). Centrin2 from the human parasite toxoplasma gondii is required for its invasion and intracellular replication. Journal of Cell Science, 132, jcs228791.
Leung, J. M., Nagayasu, E., Hwang, Y. C., Liu, J., Pierce, P. G., Phan, I. Q., … Hu, K. (2020). A doublecortin-domain protein of toxoplasma and its orthologues bind to and modify the structure and organization of tubulin polymers. BMC Molecular and Cell Biology, 21, 8.
Liu, W., Xie, Y., Ma, J., Luo, X., Nie, P., Zuo, Z., … Ren, J. (2015). IBS: An illustrator for the presentation and visualization of biological sequences. Bioinformatics, 31, 3359-3361.
López-Barragán, M. J., Lemieux, J., Quiñones, M., Williamson, K. C., Molina-Cruz, A., Cui, K., … Su, X. (2011). Directional gene expression and antisense transcripts in sexual and asexual stages of Plasmodium falciparum. BMC Genomics, 12, 587.
Malleret, B., Claser, C., Ong, A. S. M., Suwanarusk, R., Sriprawat, K., Howland, S. W., … Rénia, L. (2011). A rapid and robust tri-color flow cytometry assay for monitoring malaria parasite development. Scientific Reports, 1, 118.
McIntosh, M. T., Drozdowicz, Y. M., Laroiya, K., Rea, P. A., & Vaidya, A. B. (2001). Two classes of plant-like vacuolar-type H+-pyrophosphatases in malaria parasites. Molecular and Biochemical Parasitology, 114, 183-195.
Mesén-Ramírez, P., Bergmann, B., Tran, T. T., Garten, M., Stäcker, J., Naranjo-Prado, I., … Spielmann, T. (2019). EXP1 is critical for nutrient uptake across the parasitophorous vacuole membrane of malaria parasites. PLoS Biology, 17, e3000473.
Mesén-Ramírez, P., Reinsch, F., Blancke Soares, A., Bergmann, B., Ullrich, A. K., Tenzer, S., & Spielmann, T. (2016). Stable translocation intermediates jam global protein export in Plasmodium falciparum parasites and link the PTEX component EXP2 with translocation activity. PLoS Pathogens, 12, e1005618.
Mitchell, A. L., Attwood, T. K., Babbitt, P. C., Blum, M., Bork, P., Bridge, A., … Finn, R. D. (2019). InterPro in 2019: Improving coverage, classification and access to protein sequence annotations. Nucleic Acids Research, 47, D351-D360.
Moon, R. W., Hall, J., Rangkuti, F., Ho, Y. S., Almond, N., Mitchell, G. H., … Blackman, M. J. (2013). Adaptation of the genetically tractable malaria pathogen plasmodium knowlesi to continuous culture in human erythrocytes. Proceedings of the National Academy of Sciences, 110, 531-536.
Morrissette, N. S., & Sibley, L. D. (2002). Cytoskeleton of Apicomplexan parasites. Microbiology and Molecular Biology Reviews, 66, 21-38.
Parkyn Schneider, M., Liu, B., Glock, P., Suttie, A., McHugh, E., Andrew, D., … Dixon, M. W. A. (2017). Disrupting assembly of the inner membrane complex blocks Plasmodium falciparum sexual stage development. PLoS Pathogens, 13, e1006659.
Perrin, A. J., Collins, C. R., Russell, M. R. G., Collinson, L. M., Baker, D. A., & Blackman, M. J. (2018). The actinomyosin motor drives malaria parasite red blood cell invasion but not egress. MBio, 9, e00905-e00918.
Peterson, M. G., Marshall, V. M., Smythe, J. A., Crewther, P. E., Lew, A., Silva, A., … Kemp, D. J. (1989). Integral membrane protein located in the apical complex of Plasmodium falciparum. Molecular and Cellular Biology, 9, 3151-3154.
Prommana, P., Uthaipibull, C., Wongsombat, C., Kamchonwongpaisan, S., Yuthavong, Y., Knuepfer, E., … Shaw, P. J. (2013). Inducible knockdown of plasmodium gene expression using the glmS ribozyme. PLoS One, 8, e73783.
Rivadeneira, E., Wasserman, M., & Espinal, C. (1983). Separation and concentration of Schizonts of Plasmodium falciparum by Percoll gradients. The Journal of Protozoology, 30, 367-370.
Roux, K. J., Kim, D. I., Raida, M., & Burke, B. (2012). A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. The Journal of Cell Biology, 196, 801-810.
Rudlaff, R. M., Kraemer, S., Streva, V. A., & Dvorin, J. D. (2019). An essential contractile ring protein controls cell division in Plasmodium falciparum. Nature Communications, 10, 2181.
Russell, D. G., & Burns, R. G. (1984). The polar ring of coccidian sporozoites: A unique microtubule-organizing Centre. Journal of Cell Science, 65, 193-207.
Saini, E., Zeeshan, M., Brady, D., Pandey, R., Kaiser, G., Koreny, L., … Tewari, R. (2017). Photosensitized INA-Labelled protein 1 (PhIL1) is novel component of the inner membrane complex and is required for plasmodium parasite development. Scientific Reports, 7, 15577.
Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., … Cardona, A. (2012). Fiji: An open-source platform for biological-image analysis. Nature Methods, 9, 676-682.
Schnider, C. B., Bausch-Fluck, D., Brühlmann, F., Heussler, V. T., & Burda, P.-C. (2018). BioID reveals novel proteins of the plasmodium parasitophorous vacuole membrane. mSphere, 3, e00522.
Sinden, R. E. (1982). Gametocytogenesis of Plasmodium falciparum in vitro: An electron microscopic study. Parasitology, 84, 1-11.
Soldati, D., Foth, B. J., & Cowman, A. F. (2004). Molecular and functional aspects of parasite invasion. Trends in Parasitology, 20, 567-574.
Sonnhammer, E. L., von Heijne, G., & Krogh, A. (1998). A hidden Markov model for predicting transmembrane helices in protein sequences. Proceedings/International Conference on Intelligent Systems for Molecular Biology, 6, 175-182.
Spielmann, T., Gras, S., Sabitzki, R., & Meissner, M. (2020). Endocytosis in plasmodium and toxoplasma parasites. Trends in Parasitology, 36, 520-532.
Straimer, J., Gnädig, N. F., Witkowski, B., Amaratunga, C., Duru, V., Ramadani, A. P., … Fidock, D. A. (2015). K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates. Science, 347, 428-431.
Struck, N. S., de Souza Dias, S., Langer, C., Marti, M., Pearce, J. A., Cowman, A. F., & Gilberger, T. W. (2005). Re-defining the Golgi complex in Plasmodium falciparum using the novel Golgi marker PfGRASP. Journal of Cell Science, 118, 5603-5613.
Suvorova, E. S., Francia, M., Striepen, B., & White, M. W. (2015). A novel bipartite centrosome coordinates the Apicomplexan cell cycle. PLoS Biology, 13(3), e1002093.
Torres, J. A., Pasquarelli, R. R., Back, P. S., Moon, A. S., & Bradley, P. J. (2021). Identification and molecular dissection of IMC32, a conserved Toxoplasma inner membrane complex protein that is essential for parasite replication. MBio, 12, e03622.
Trager, W, & Jensen, J. B. (1997). Continuous culture of Plasmodium falciparum: Its impact on malaria research. International Journal for Parasitology, 27, 989-1006. https://doi.org/10.1016/S0020-7519(97)00080-5.
Tran, J. Q., De Leon, J. C., Li, C., Huynh, M. H., Beatty, W., & Morrissette, N. S. (2010). RNG1 is a late marker of the apical polar ring in toxoplasma gondii. Cytoskeleton, 67, 586-598.
Tremp, A. Z., Al-Khattaf, F. S., & Dessens, J. T. (2014). Distinct temporal recruitment of plasmodium alveolins to the subpellicular network. Parasitology Research, 113, 4177-4188.
Vizcaíno, J. A., Csordas, A., Del-Toro, N., Dianes, J. A., Griss, J., Lavidas, I. (2016). 2016 update of the PRIDE database and its related tools. Nucleic Acids Research, 44, D447-D456.
Wall, R. J., Roques, M., Katris, N. J., Koreny, L., Stanway, R. R., Brady, D. (2016). SAS6-like protein in plasmodium indicates that conoid-associated apical complex proteins persist in invasive stages within the mosquito vector. Scientific Reports, 6, 28604.
Wall, R. J., Zeeshan, M., Katris, N. J., Limenitakis, R., Rea, E., Stock, J. (2019). Systematic analysis of plasmodium myosins reveals differential expression, localisation, and function in invasive and proliferative parasite stages. Cellular Microbiology, 21(10), e13082.
Walliker, D., Quakyi, I. A., Wellems, T. E., McCutchan, T. F., Szarfman, A., London, W. T., … Carter, R. (1987). Genetic analysis of the human malaria parasite Plasmodium falciparum. Science, 236, 1661-1666.
Werner, E. B., Taylor, W. R., & Holder, A. A. (1998). A plasmodium chabaudi protein contains a repetitive region with a predicted spectrin-like structure. Molecular and Biochemical Parasitology, 94, 185-196.
Wetzel, J., Herrmann, S., Swapna, L. S., Prusty, D., Peter, A. T. J., Kono, M., … Gilberger, T. W. (2015). The role of palmitoylation for protein recruitment to the inner membrane complex of the malaria parasite. The Journal of Biological Chemistry, 290, 1712-1728.
Wichers, J. S., Scholz, J. A. M., Strauss, J., Witt, S., Lill, A., Ehnold, L. I., … Bachmann, A. (2019). Dissecting the gene expression, localization, membrane topology, and function of the Plasmodium falciparum STEVOR protein family. MBio, 10, e01500-e01519.
Yang, T., Yeoh, L. M., Tutor, M. V., Dixon, M. W., McMillan, P. J., Xie, S. C., … Cobbold, S. A. (2019). Decreased K13 abundance reduces hemoglobin catabolism and Proteotoxic stress, underpinning Artemisinin resistance. Cell Reports, 29, 2917-2928.e5.
Zanghì, G., Vembar, S. S., Baumgarten, S., Ding, S., Guizetti, J., Bryant, J. M., … Scherf, A. (2018). A specific PfEMP1 is expressed in P. falciparum Sporozoites and plays a role in hepatocyte infection. Cell Reports, 22, 2951-2963.
Zhang, M., Wang, C., Otto, T. D., Oberstaller, J., Liao, X., Adapa, S. R., … Adams, J. H. (2018). Uncovering the essential genes of the human malaria parasite Plasmodium falciparum by saturation mutagenesis. Science, 360, eaap7847.