Heusler alloys for spintronic devices: review on recent development and future perspectives.
Heusler alloy
antiferromagnet
atomic disorder
curie temperature
half-metallic ferromagnet
magnetic moment
minority bandgap
spin gapless semiconductor
spin polarisation
Journal
Science and technology of advanced materials
ISSN: 1468-6996
Titre abrégé: Sci Technol Adv Mater
Pays: United States
ID NLM: 101614420
Informations de publication
Date de publication:
29 Mar 2021
29 Mar 2021
Historique:
entrez:
8
4
2021
pubmed:
9
4
2021
medline:
9
4
2021
Statut:
epublish
Résumé
Heusler alloys are theoretically predicted to become half-metals at room temperature (RT). The advantages of using these alloys are good lattice matching with major substrates, high Curie temperature above RT and intermetallic controllability for spin density of states at the Fermi energy level. The alloys are categorised into half- and full-Heusler alloys depending upon the crystalline structures, each being discussed both experimentally and theoretically. Fundamental properties of ferromagnetic Heusler alloys are described. Both structural and magnetic characterisations on an atomic scale are typically carried out in order to prove the half-metallicity at RT. Atomic ordering in the films is directly observed by X-ray diffraction and is also indirectly probed via the temperature dependence of electrical resistivity. Element specific magnetic moments and spin polarisation of the Heusler alloy films are directly measured using X-ray magnetic circular dichroism and Andreev reflection, respectively. By employing these ferromagnetic alloy films in a spintronic device, efficient spin injection into a non-magnetic material and large magnetoresistance are also discussed. Fundamental properties of antiferromagnetic Heusler alloys are then described. Both structural and magnetic characterisations on an atomic scale are shown. Atomic ordering in the Heusler alloy films is indirectly measured by the temperature dependence of electrical resistivity. Antiferromagnetic configurations are directly imaged by X-ray magnetic linear dichroism and polarised neutron reflection. The applications of the antiferromagnetic Heusler alloy films are also explained. The other non-magnetic Heusler alloys are listed. A brief summary is provided at the end of this review.
Identifiants
pubmed: 33828415
doi: 10.1080/14686996.2020.1812364
pii: 1812364
pmc: PMC8009123
doi:
Types de publication
Journal Article
Review
Langues
eng
Pagination
235-271Informations de copyright
© 2021 The Author(s). Published by National Institute for Materials Science in partnership with Taylor & Francis Group.
Déclaration de conflit d'intérêts
No potential conflict of interest was reported by the authors.
Références
Nat Commun. 2016 Jan 18;7:10276
pubmed: 26776829
Phys Rev Lett. 1993 Feb 1;70(5):694-697
pubmed: 10054179
J Phys Condens Matter. 2010 Apr 28;22(16):164212
pubmed: 21386418
Phys Rev B Condens Matter. 1986 Oct 15;34(8):5009-5016
pubmed: 9940323
Nature. 2001 Mar 15;410(6826):345-8
pubmed: 11268205
Nat Mater. 2010 Sep;9(9):721-4
pubmed: 20622862
Phys Rev Lett. 1995 Jul 3;75(1):152-155
pubmed: 10059138
Materials (Basel). 2019 Jul 19;12(14):
pubmed: 31330978
Adv Mater. 2014 Oct 8;26(37):6483-90
pubmed: 25123705
Nat Commun. 2016 Sep 27;7:12924
pubmed: 27671444
Nat Mater. 2004 Dec;3(12):868-71
pubmed: 15516927
Phys Rev Lett. 2011 Mar 18;106(11):117201
pubmed: 21469891
J Phys Condens Matter. 2005 Sep 21;17(37):5889-5894
pubmed: 32397058
Science. 1998 Oct 2;282(5386):85-8
pubmed: 9756482
Phys Rev B Condens Matter. 1989 Mar 1;39(7):4828-4830
pubmed: 9948867
Materials (Basel). 2018 Jan 11;11(1):
pubmed: 29324709
Nat Nanotechnol. 2016 Mar;11(3):231-41
pubmed: 26936817
Phys Rev Lett. 1995 Apr 17;74(16):3273-3276
pubmed: 10058155
Phys Rev Lett. 1988 Nov 21;61(21):2472-2475
pubmed: 10039127
Phys Rev Lett. 1995 Jul 3;75(1):109-112
pubmed: 10059127
Phys Rev Lett. 2002 Jun 3;88(22):227201
pubmed: 12059451
Adv Mater. 2016 Oct;28(38):8499-8504
pubmed: 27500768
Phys Rev Lett. 2013 Mar 8;110(10):100401
pubmed: 23521232
ACS Nano. 2007 Dec;1(5):384-9
pubmed: 19206657
J Phys Condens Matter. 2014 Feb 26;26(8):086003
pubmed: 24501208
Sci Rep. 2017 Feb 24;7:43064
pubmed: 28233780
Phys Rev Lett. 1995 Feb 13;74(7):1171-1173
pubmed: 10058952
Phys Rev Lett. 2013 Feb 8;110(6):067201
pubmed: 23432296
Nat Commun. 2016 Aug 26;7:12671
pubmed: 27561795
Sci Rep. 2015 Dec 17;5:18387
pubmed: 26672482
Phys Rev B Condens Matter. 1990 Jul 15;42(3):1533-1540
pubmed: 9995582
Sci Adv. 2017 Apr 14;3(4):e1602241
pubmed: 28439545
J Phys Condens Matter. 2007 Aug 8;19(31):315213
pubmed: 21694113
Phys Rev Lett. 2013 Nov 22;111(21):217202
pubmed: 24313521
Phys Rev Lett. 1992 Mar 23;68(12):1943-1946
pubmed: 10045260
Sci Rep. 2016 Jul 26;6:30249
pubmed: 27457186
Nature. 2017 Aug 31;548(7669):561-566
pubmed: 28846999
Nat Mater. 2004 Dec;3(12):862-7
pubmed: 15516928
Phys Rev Lett. 2006 Jul 14;97(2):026404
pubmed: 16907467
Science. 2000 Feb 11;287(5455):1019-22
pubmed: 10669409
Nat Mater. 2015 Jul;14(7):679-84
pubmed: 25774953
Phys Rev Lett. 2008 Apr 18;100(15):156404
pubmed: 18518135
Philos Trans A Math Phys Eng Sci. 2016 Aug 13;374(2074):
pubmed: 27402928
Nat Commun. 2014 May 30;5:3974
pubmed: 24875774