Genetic substructure and complex demographic history of South African Bantu speakers.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
07 04 2021
Historique:
received: 10 07 2020
accepted: 10 02 2021
entrez: 8 4 2021
pubmed: 9 4 2021
medline: 23 4 2021
Statut: epublish

Résumé

South Eastern Bantu-speaking (SEB) groups constitute more than 80% of the population in South Africa. Despite clear linguistic and geographic diversity, the genetic differences between these groups have not been systematically investigated. Based on genome-wide data of over 5000 individuals, representing eight major SEB groups, we provide strong evidence for fine-scale population structure that broadly aligns with geographic distribution and is also congruent with linguistic phylogeny (separation of Nguni, Sotho-Tswana and Tsonga speakers). Although differential Khoe-San admixture plays a key role, the structure persists after Khoe-San ancestry-masking. The timing of admixture, levels of sex-biased gene flow and population size dynamics also highlight differences in the demographic histories of individual groups. The comparisons with five Iron Age farmer genomes further support genetic continuity over ~400 years in certain regions of the country. Simulated trait genome-wide association studies further show that the observed population structure could have major implications for biomedical genomics research in South Africa.

Identifiants

pubmed: 33828095
doi: 10.1038/s41467-021-22207-y
pii: 10.1038/s41467-021-22207-y
pmc: PMC8027885
doi:

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2080

Subventions

Organisme : Wellcome Trust
ID : 069683/Z/02/Z
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 085477/Z/08/Z
Pays : United Kingdom
Organisme : NHGRI NIH HHS
ID : U54 HG006938
Pays : United States
Organisme : Wellcome Trust
ID : 058893/Z/99/A
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 085477/B/08/Z
Pays : United Kingdom

Références

Deacon, H. J. & Deacon, J. Human Beginnings in South Africa: Uncovering the Secrets of the Stone Age (New Africa Books, 1999).
Wadley, L., Hodgskiss, T. & Grant, M. Implications for complex cognition from the hafting of tools with compound adhesives in the Middle Stone Age, South Africa. Proc. Natl. Acad. Sci. USA 106, 9590–9594 (2009).
pubmed: 19433786 doi: 10.1073/pnas.0900957106 pmcid: 2700998
d’Errico, F. et al. Early evidence of San material culture represented by organic artifacts from Border Cave, South Africa. Proc. Natl. Acad. Sci. USA 109, 13214–13219 (2012).
pubmed: 22847420 doi: 10.1073/pnas.1204213109 pmcid: 3421171
Lander, F. & Russell, T. The archaeological evidence for the appearance of pastoralism and farming in southern Africa. PLoS ONE 13, e0198941 (2018).
pubmed: 29902271 pmcid: 6002040 doi: 10.1371/journal.pone.0198941
Sadr, K. Oxford Handbook of African Archaeology 645–655 (Oxford University Press, 2013).
Smith, A. B. Pastoralism in Africa: Origins and Development Ecology (Hurst & Company, 1992).
Smith, A. B. Origins and spread of pastoralism in Africa. Annu. Rev. Anthropol. 21, 125–141 (1992).
doi: 10.1146/annurev.an.21.100192.001013
Breton, G. et al. Lactase persistence alleles reveal partial East African ancestry of southern African Khoe pastoralists. Curr. Biol. 24, 852–858 (2014).
pubmed: 24704072 doi: 10.1016/j.cub.2014.02.041
Macholdt, E. et al. Tracing pastoralist migrations to southern Africa with lactase persistence alleles. Curr. Biol. 24, 875–879 (2014).
pubmed: 24704073 pmcid: 5102062 doi: 10.1016/j.cub.2014.03.027
Schlebusch, C. M. et al. Southern African ancient genomes estimate modern human divergence to 350,000 to 260,000 years ago. Science 358, 652–655 (2017).
pubmed: 28971970 doi: 10.1126/science.aao6266
Skoglund, P. et al. Reconstructing prehistoric African population structure. Cell 171, 59–71.e21 (2017).
pubmed: 28938123 pmcid: 5679310 doi: 10.1016/j.cell.2017.08.049
Pickrell, J. K. et al. Ancient west Eurasian ancestry in southern and eastern Africa. Proc. Natl. Acad. Sci. USA 111, 2632–2637 (2014).
pubmed: 24550290 doi: 10.1073/pnas.1313787111 pmcid: 3932865
Güldemann, T. & Vossen, R. African Languages: An Introduction (eds Heine, Bernd and Derek Nurse) 99–122 (Cambridge University Press, 2000).
Brenzinger, M. Language and Poverty 37–50 (Cambridge University Press, 2008).
Huffman, T. N. Handbook to the Iron Age: The Archaeology of Pre-colonial Farming Societies in Southern Africa (University of KwaZulu-Natal Press, 2007).
Mitchell, P. & Lane, P. The Oxford Handbook of African Archaeology (OUP Oxford, 2013).
Soodyall, H. The prehistory of Africa: Tracing the lineage of modern man 97–108 (Jonathan Ball Publishers, 2006).
Hammond-Tooke, W. D. Southern Bantu origins: light from kinship terminology. Southern African Humanities 16, 71–78 (2004).
Herbert, R. K. & Huffman, T. N. A new perspective on Bantu expansion and classification: linguistic and archaeological evidence fifty years after Doke. Afr. Stud. 52, 53–76 (1993).
doi: 10.1080/00020189308707778
Petersen, D. C. et al. Complex patterns of genomic admixture within southern Africa. PLoS Genet. 9, e1003309 (2013).
pubmed: 23516368 pmcid: 3597481 doi: 10.1371/journal.pgen.1003309
Schlebusch, C. M. et al. Genomic variation in seven Khoe-San groups reveals adaptation and complex African history. Science 338, 374–379 (2012).
pubmed: 22997136 doi: 10.1126/science.1227721 pmcid: 8978294
Chimusa, E. R. et al. A genomic portrait of haplotype diversity and signatures of selection in indigenous southern African populations. PLoS Genet. 11, e1005052 (2015).
pubmed: 25811879 pmcid: 4374865 doi: 10.1371/journal.pgen.1005052
de Wit, E. et al. Genome-wide analysis of the structure of the South African Coloured Population in the Western Cape. Hum. Genet. 128, 145–153 (2010).
pubmed: 20490549 doi: 10.1007/s00439-010-0836-1
Wentzel, P. J. The Relationship Between Venda and Western Shona (Pretoria: Unisa, 1981).
Jones-Phillipson, R. Affinities between Venda and other Southern Bantu languages (SOAS University of London, 1972).
Herbert, R. K. & Bailey, R. Language in South Africa 50–78 (Cambridge University Press, 2002).
Doke, C. M. The Southern Bantu Languages: Handbook of African Languages. (Routledge, 2017).
Schlebusch, C. M. & Jakobsson, M. Tales of human migration, admixture, and selection in Africa. Annu. Rev. Genomics Hum. Genet. 19, 405–428 (2018).
pubmed: 29727585 doi: 10.1146/annurev-genom-083117-021759
Lane, A. B., Soodyall, H. & Arndt, S. Genetic substructure in South African Bantu‐speakers: evidence from autosomal DNA and Y‐chromosome studies. Am. J. Phys. Anthropol. 119, 175–185 (2002).
pubmed: 12237937 doi: 10.1002/ajpa.10097
May, A. et al. Genetic diversity in black South Africans from Soweto. BMC Genomics 14, 644 (2013).
pubmed: 24059264 pmcid: 3850641 doi: 10.1186/1471-2164-14-644
Choudhury, A. et al. Whole-genome sequencing for an enhanced understanding of genetic variation among South Africans. Nat. Commun. 8, 2062 (2017).
pubmed: 29233967 pmcid: 5727231 doi: 10.1038/s41467-017-00663-9
Gurdasani, D. et al. The African Genome Variation Project shapes medical genetics in Africa. Nature 517, 327–332 (2015).
pubmed: 25470054 doi: 10.1038/nature13997
Bonner, P. L. & Segal, L. Soweto: A History (Maskew Miller Longman, 1998).
Diaz-Papkovich, A., Anderson-Trocmé, L., Ben-Eghan, C. & Gravel, S. UMAP reveals cryptic population structure and phenotype heterogeneity in large genomic cohorts. PLoS Genet. 15, e1008432 (2019).
pubmed: 31675358 pmcid: 6853336 doi: 10.1371/journal.pgen.1008432
Lawson, D. J., Hellenthal, G., Myers, S. & Falush, D. Inference of population structure using dense haplotype data. PLoS Genet. 8, e1002453 (2012).
pubmed: 22291602 pmcid: 3266881 doi: 10.1371/journal.pgen.1002453
Semo, A. et al. Along the Indian Ocean Coast: genomic variation in Mozambique provides new insights into the Bantu expansion. Mol. Biol. Evol. 37, 406–416 (2020).
pubmed: 31593238 doi: 10.1093/molbev/msz224
Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).
pubmed: 19648217 pmcid: 2752134 doi: 10.1101/gr.094052.109
Hellenthal, G. et al. A genetic atlas of human admixture history. Science 343, 747–751 (2014).
pubmed: 24531965 pmcid: 4209567 doi: 10.1126/science.1243518
Busby, G. B. et al. Admixture into and within sub-Saharan Africa. elife 5, e15266 (2016).
Patin, E. et al. Dispersals and genetic adaptation of Bantu-speaking populations in Africa and North America. Science 356, 543–546 (2017).
pubmed: 28473590 doi: 10.1126/science.aal1988
Mitchell, P. Hunter-gatherer archaeology in southern Africa. Before Farming 2002, 1–36 (2002).
doi: 10.3828/bfarm.2002.1.3
Mathebula, M. 800 Years of Tsonga History: 1200–2000 (Sasavona Publishers and Booksellers, 2013).
Loh, P.-R. et al. Inferring admixture histories of human populations using linkage disequilibrium. Genetics 193, 1233–1254 (2013).
pubmed: 23410830 pmcid: 3606100 doi: 10.1534/genetics.112.147330
Salter-Townshend, M. & Myers, S. Fine-scale inference of ancestry segments without prior knowledge of admixing groups. Genetics 212, 869–889 (2019).
pubmed: 31123038 pmcid: 6614886 doi: 10.1534/genetics.119.302139
Pickrell, J. K. et al. The genetic prehistory of southern Africa. Nat. Commun. 3, 1143 (2012).
pubmed: 23072811 doi: 10.1038/ncomms2140
Uren, C. et al. Fine-scale human population structure in Southern Africa reflects ecogeographic boundaries. Genetics 204, 303–314 (2016).
pubmed: 27474727 pmcid: 5012395 doi: 10.1534/genetics.116.187369
Giliomee, H. B. & Mbenga, B. K. Nuwe geskiedenis van Suid-Afrika (Tafelberg, 2007).
Bajić, V. et al. Genetic structure and sex-biased gene flow in the history of southern African populations. Am. J. Phys. Anthropol. 167, 656–671 (2018).
pubmed: 30192370 pmcid: 6667921 doi: 10.1002/ajpa.23694
Schlebusch, C. M. Genetic variation in Khoisan-speaking populations from southern Africa (University of the Witwatersrand Johannesburg, 2010).
Browning, S. R. et al. Ancestry-specific recent effective population size in the Americas. PLoS Genet. 14, e1007385 (2018).
pubmed: 29795556 pmcid: 5967706 doi: 10.1371/journal.pgen.1007385
Huffman, T. N. The archaeology of the Nguni past. Southern African Humanities 16, 79–111 (2004).
Hellwege, J. N. et al. Population stratification in genetic association studies. Curr. Protoc. Hum. Genet. 95, 1.22.1–1.22.23 (2017).
Price, A. L., Zaitlen, N. A., Reich, D. & Patterson, N. New approaches to population stratification in genome-wide association studies. Nat. Rev. Genet. 11, 459–463 (2010).
pubmed: 20548291 pmcid: 2975875 doi: 10.1038/nrg2813
Lawson, D. J. et al. Is population structure in the genetic biobank era irrelevant, a challenge, or an opportunity? Hum. Genet. 139, 23–41 (2020).
pubmed: 31030318 doi: 10.1007/s00439-019-02014-8
Buniello, A. et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 47, D1005–D1012 (2019).
pubmed: 30445434 doi: 10.1093/nar/gky1120
Ramsay, M. et al. H3Africa AWI-Gen Collaborative Centre: a resource to study the interplay between genomic and environmental risk factors for cardiometabolic diseases in four sub-Saharan African countries. Glob. Health Epidemiol. Genom 1, e20 (2016).
pubmed: 29276616 pmcid: 5732578 doi: 10.1017/gheg.2016.17
Ali, S. A. et al. Genomic and environmental risk factors for cardiometabolic diseases in Africa: methods used for Phase 1 of the AWI-Gen population cross-sectional study. Glob. Health Action 11, 1507133 (2018).
pubmed: 30259792 pmcid: 6161608 doi: 10.1080/16549716.2018.1507133
Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4, 7 (2015).
pubmed: 25722852 pmcid: 4342193 doi: 10.1186/s13742-015-0047-8
Manichaikul, A. et al. Robust relationship inference in genome-wide association studies. Bioinformatics 26, 2867–2873 (2010).
pubmed: 20926424 pmcid: 3025716 doi: 10.1093/bioinformatics/btq559
Conomos, M. P. et al. Genetic Diversity and Association Studies in US Hispanic/Latino Populations: Applications in the Hispanic Community Health Study/Study of Latinos. Am. J. Hum. Genet. 98, 165–184 (2016).
pubmed: 26748518 pmcid: 4716704 doi: 10.1016/j.ajhg.2015.12.001
1000 Genomes Project Consortium et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).
Vicente, M., Jakobsson, M., Ebbesen, P. & Schlebusch, C. M. Genetic affinities among Southern Africa hunter-gatherers and the impact of admixing farmer and Herder populations. Mol. Biol. Evol. 36, 1849–1861 (2019).
pubmed: 31288264 pmcid: 6735883 doi: 10.1093/molbev/msz089
Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. PLoS Genet. 2, e190 (2006).
pubmed: 17194218 pmcid: 1713260 doi: 10.1371/journal.pgen.0020190
Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).
pubmed: 29722887 pmcid: 5967553 doi: 10.1093/molbev/msy096
Grollemund, R. et al. Bantu expansion shows that habitat alters the route and pace of human dispersals. Proc. Natl. Acad. Sci. USA 112, 13296–13301 (2015).
pubmed: 26371302 doi: 10.1073/pnas.1503793112 pmcid: 4629331
Ronquist, F. & Huelsenbeck, J. P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574 (2003).
pubmed: 12912839 doi: 10.1093/bioinformatics/btg180
Felsenstein, J. Phylogenies from restriction sites: a maximum-likelihood approach. Evolution 46, 159–173 (1992).
pubmed: 28564959
Martin, A. D., Quinn, K. M. & Park, J. H. MCMCpack: Markov Chain Monte Carlo in R. J. Stat. Soft. 42, 1–21 (2011).
Oksanen, J. Vegan: ecological diversity (R Project, 2013).
Behr, A. A., Liu, K. Z., Liu-Fang, G., Nakka, P. & Ramachandran, S. pong: fast analysis and visualization of latent clusters in population genetic data. Bioinformatics 32, 2817–2823 (2016).
pubmed: 27283948 pmcid: 5018373 doi: 10.1093/bioinformatics/btw327
Maples, B. K., Gravel, S., Kenny, E. E. & Bustamante, C. D. RFMix: a discriminative modeling approach for rapid and robust local-ancestry inference. Am. J. Hum. Genet. 93, 278–288 (2013).
pubmed: 23910464 pmcid: 3738819 doi: 10.1016/j.ajhg.2013.06.020
Delaneau, O., Zagury, J.-F. & Marchini, J. Improved whole-chromosome phasing for disease and population genetic studies. Nat. Methods 10, 5–6 (2013).
pubmed: 23269371 doi: 10.1038/nmeth.2307
Browning, S. et al. Local ancestry inference in a large US-based Hispanic/Latino study: Hispanic Community Health Study/Study of Latinos (HCHS/SOL). G3 6, 1525–1534 (2016).
pubmed: 27172203 doi: 10.1534/g3.116.028779 pmcid: 4889649
Van Geystelen, A., Decorte, R. & Larmuseau, M. H. D. AMY-tree: an algorithm to use whole genome SNP calling for Y chromosomal phylogenetic applications. BMC Genomics 14, 101 (2013).
pubmed: 23405914 pmcid: 3583733 doi: 10.1186/1471-2164-14-101
Severson, A. L. et al. SNAPPY: Single nucleotide assignment of phylogenetic parameters on the Y chromosome. bioRxiv (2018) https://www.biorxiv.org/content/10.1101/454736v2 .
Weissensteiner, H. et al. HaploGrep 2: mitochondrial haplogroup classification in the era of high-throughput sequencing. Nucleic Acids Res. 44, W58–W63 (2016).
pubmed: 27084951 pmcid: 4987869 doi: 10.1093/nar/gkw233
van Oven, M. & Kayser, M. Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation. Hum. Mutat. 30, E386–E394 (2009).
pubmed: 18853457 doi: 10.1002/humu.20921
Goldberg, A. & Rosenberg, N. A. Beyond 2/3 and 1/3: the complex signatures of sex-biased admixture on the X chromosome. Genetics 201, 263–279 (2015).
pubmed: 26209245 pmcid: 4566268 doi: 10.1534/genetics.115.178509
Rishishwar, L. et al. Ancestry, admixture and fitness in Colombian genomes. Sci. Rep. 5, 12376 (2015).
pubmed: 26197429 pmcid: 4508918 doi: 10.1038/srep12376
Browning, B. L. & Browning, S. R. Detecting identity by descent and estimating genotype error rates in sequence data. Am. J. Hum. Genet. 93, 840–851 (2013).
pubmed: 24207118 pmcid: 3824133 doi: 10.1016/j.ajhg.2013.09.014
Chiang, C. W. K., Ralph, P. & Novembre, J. Conflation of short identity-by-descent segments bias their inferred length distribution. G3 6, 1287–1296 (2016).
pubmed: 26935417 doi: 10.1534/g3.116.027581 pmcid: 4856080
Browning, B. L., Zhou, Y. & Browning, S. R. A one-penny imputed genome from next-generation reference panels. Am. J. Hum. Genet. 103, 338–348 (2018).
pubmed: 30100085 pmcid: 6128308 doi: 10.1016/j.ajhg.2018.07.015
Voight, B. F., Kudaravalli, S., Wen, X. & Pritchard, J. K. A map of recent positive selection in the human genome. PLoS Biol 4, e72 (2006).
pubmed: 16494531 pmcid: 1382018 doi: 10.1371/journal.pbio.0040072
Yi, X. et al. Sequencing of fifty human exomes reveals adaptation to high altitude. Science 329, 75–78 (2010).
pubmed: 20595611 pmcid: 3711608 doi: 10.1126/science.1190371
Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).
pubmed: 21653522 pmcid: 3137218 doi: 10.1093/bioinformatics/btr330

Auteurs

Dhriti Sengupta (D)

Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.

Ananyo Choudhury (A)

Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.

Cesar Fortes-Lima (C)

Human Evolution, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.

Shaun Aron (S)

Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.

Gavin Whitelaw (G)

KwaZulu-Natal Museum, Pietermaritzburg, South Africa.
School of Geography, Archaeology & Environmental Studies, University of the Witwatersrand, Johannesburg, South Africa.

Koen Bostoen (K)

UGent Centre for Bantu Studies, Department of Languages and Cultures, Ghent University, Ghent, Belgium.

Hilde Gunnink (H)

UGent Centre for Bantu Studies, Department of Languages and Cultures, Ghent University, Ghent, Belgium.

Natalia Chousou-Polydouri (N)

Department of Comparative Linguistic Science and Center for the Interdisciplinary Study of Language Evolution, University of Zürich, Zürich, Switzerland.

Peter Delius (P)

Department of History, University of the Witwatersrand, Johannesburg, South Africa.

Stephen Tollman (S)

MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.

F Xavier Gómez-Olivé (FX)

MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.

Shane Norris (S)

MRC/Wits Developmental Pathways for Health Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.

Felistas Mashinya (F)

Department of Pathology and Medical Sciences; School of Health Care Sciences, Faculty of Health Sciences, University of Limpopo, Polokwane, South Africa.

Marianne Alberts (M)

Department of Pathology and Medical Sciences; School of Health Care Sciences, Faculty of Health Sciences, University of Limpopo, Polokwane, South Africa.

Scott Hazelhurst (S)

Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
School of Electrical and Information Engineering, University of the Witwatersrand, Johannesburg, South Africa.

Carina M Schlebusch (CM)

Human Evolution, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.
SciLifeLab, Uppsala, Sweden.
Palaeo-Research Institute, University of Johannesburg, Johannesburg, South Africa.

Michèle Ramsay (M)

Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa. Michele.Ramsay@wits.ac.za.
Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa. Michele.Ramsay@wits.ac.za.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C

Classifications MeSH