Derivation of Luminescent Mesoporous Silicon Nanocrystals from Biomass Rice Husks by Facile Magnesiothermic Reduction.
biomass rice husk
high porosity
luminescence
nanocrystals
silicon
Journal
Nanomaterials (Basel, Switzerland)
ISSN: 2079-4991
Titre abrégé: Nanomaterials (Basel)
Pays: Switzerland
ID NLM: 101610216
Informations de publication
Date de publication:
01 Mar 2021
01 Mar 2021
Historique:
received:
31
12
2020
revised:
18
02
2021
accepted:
22
02
2021
entrez:
3
4
2021
pubmed:
4
4
2021
medline:
4
4
2021
Statut:
epublish
Résumé
High-quality silicon (Si) nanocrystals that simultaneously had superior mesoporous and luminescent characteristics were derived from sticky, red, and brown rice husks via the facile and cost-effective magnesiothermic reduction method. The Si nanocrystals were confirmed to comprise an aggregated morphology with spherical nanocrystals (e.g., average sizes of 15-50 nm). Due to the surface functional groups formed at the nanocrystalline Si surfaces, the Si nanocrystals clearly exhibited multiple luminescence peaks in visible-wavelength regions (i.e., blue, green, and yellow light). Among the synthesized Si nanocrystals, additionally, the brown rice husk (BRH)-derived Si nanocrystals showed to have a strong UV absorption and a high porosity (i.e., large specific surface area: 265.6 m
Identifiants
pubmed: 33804437
pii: nano11030613
doi: 10.3390/nano11030613
pmc: PMC7999164
pii:
doi:
Types de publication
Journal Article
Langues
eng
Subventions
Organisme : National Research Foundation of Korea
ID : 2016R1A6A1A03012877
Organisme : National Research Foundation of Korea
ID : 2019R1A2C1085448
Références
Chem Soc Rev. 2015 Jul 21;44(14):4853-921
pubmed: 26051500
Science. 2020 Mar 6;367(6482):1135-1140
pubmed: 32139544
Nature. 2007 May 24;447(7143):441-6
pubmed: 17522678
Chem Commun (Camb). 2009 Aug 21;(31):4684-6
pubmed: 19641809
J Hazard Mater. 2020 Nov 15;399:122949
pubmed: 32502856
Adv Mater. 2013 Apr 11;25(14):2078-83
pubmed: 23355317
Phys Chem Chem Phys. 2011 Dec 7;13(45):20255-61
pubmed: 21993573
J Am Chem Soc. 2009 Apr 1;131(12):4434-8
pubmed: 19235931
Sci Rep. 2020 Mar 11;10(1):4491
pubmed: 32161297
Nanotechnology. 2008 Jun 18;19(24):245603
pubmed: 21825815
Angew Chem Int Ed Engl. 2020 Apr 20;59(17):6827-6831
pubmed: 31971324
Nano Lett. 2015 Aug 12;15(8):5597-603
pubmed: 26214245
Adv Mater. 2019 Oct;31(43):e1903545
pubmed: 31518015
Nanoscale Res Lett. 2012 Dec 05;7(1):663
pubmed: 23217211
Nano Lett. 2013 Jun 12;13(6):2516-21
pubmed: 23662693
Small. 2020 Feb;16(5):e1905260
pubmed: 31922657
Nanomaterials (Basel). 2020 Aug 31;10(9):
pubmed: 32878244
ACS Appl Mater Interfaces. 2021 Jan 13;13(1):1105-1113
pubmed: 33332080
Sci Rep. 2014 Jul 08;4:5623
pubmed: 25001507
Proc Natl Acad Sci U S A. 2013 Jul 23;110(30):12229-34
pubmed: 23836636
ACS Nano. 2015 Jun 23;9(6):6233-41
pubmed: 26034817
Small. 2015 Oct 7;11(37):4844-9
pubmed: 26179519
Langmuir. 2006 Apr 25;22(9):4363-70
pubmed: 16618188
Materials (Basel). 2020 Aug 17;13(16):
pubmed: 32824466
Nat Mater. 2005 Feb;4(2):143-6
pubmed: 15665836
ACS Nano. 2016 Sep 27;10(9):8385-93
pubmed: 27548639
Nanomaterials (Basel). 2019 Jul 23;9(7):
pubmed: 31340552
Angew Chem Int Ed Engl. 2020 Jan 2;59(1):110-135
pubmed: 30887635
Small. 2020 Jun;16(24):e2001714
pubmed: 32419373
ACS Nano. 2015 Jun 23;9(6):5958-67
pubmed: 26027458
Chem Commun (Camb). 2018 May 10;54(39):4947-4950
pubmed: 29700524
Chem Soc Rev. 2015 Aug 21;44(16):5897-914
pubmed: 26084788
Nano Lett. 2016 Apr 13;16(4):2615-20
pubmed: 26998965
Chem Commun (Camb). 2016 May 19;52(43):7047-50
pubmed: 27161656
J Phys Chem C Nanomater Interfaces. 2009 Aug 6;113(31):13694-13702
pubmed: 22866180
Sci Rep. 2017 Mar 06;7:43688
pubmed: 28262746
Nanoscale. 2015 Sep 7;7(33):13840-7
pubmed: 26098990
Nano Lett. 2013 Feb 13;13(2):451-6
pubmed: 23317111