A PRC2-independent function for EZH2 in regulating rRNA 2'-O methylation and IRES-dependent translation.


Journal

Nature cell biology
ISSN: 1476-4679
Titre abrégé: Nat Cell Biol
Pays: England
ID NLM: 100890575

Informations de publication

Date de publication:
04 2021
Historique:
received: 22 02 2020
accepted: 24 02 2021
pubmed: 3 4 2021
medline: 29 6 2021
entrez: 2 4 2021
Statut: ppublish

Résumé

Dysregulated translation is a common feature of cancer. Uncovering its governing factors and underlying mechanism are important for cancer therapy. Here, we report that enhancer of zeste homologue 2 (EZH2), previously known as a transcription repressor and lysine methyltransferase, can directly interact with fibrillarin (FBL) to exert its role in translational regulation. We demonstrate that EZH2 enhances rRNA 2'-O methylation via its direct interaction with FBL. Mechanistically, EZH2 strengthens the FBL-NOP56 interaction and facilitates the assembly of box C/D small nucleolar ribonucleoprotein. Strikingly, EZH2 deficiency impairs the translation process globally and reduces internal ribosome entry site (IRES)-dependent translation initiation in cancer cells. Our findings reveal a previously unrecognized role of EZH2 in cancer-related translational regulation.

Identifiants

pubmed: 33795875
doi: 10.1038/s41556-021-00653-6
pii: 10.1038/s41556-021-00653-6
pmc: PMC8162121
mid: NIHMS1698128
doi:

Substances chimiques

Chromosomal Proteins, Non-Histone 0
Internal Ribosome Entry Sites 0
Multiprotein Complexes 0
NOP56 protein, human 0
Nuclear Proteins 0
Ribonucleoproteins, Small Nucleolar 0
fibrillarin 0
EZH2 protein, human EC 2.1.1.43
Enhancer of Zeste Homolog 2 Protein EC 2.1.1.43

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

341-354

Subventions

Organisme : NCI NIH HHS
ID : P50 CA180995
Pays : United States
Organisme : NCI NIH HHS
ID : U01 CA196390
Pays : United States
Organisme : NIGMS NIH HHS
ID : R35 GM138192
Pays : United States
Organisme : NCI NIH HHS
ID : R00 CA207865
Pays : United States
Organisme : NICHD NIH HHS
ID : R01 HD095463
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA208257
Pays : United States
Organisme : NIGMS NIH HHS
ID : R35 GM124765
Pays : United States

Références

Pelletier, J., Thomas, G. & Volarevic, S. Ribosome biogenesis in cancer: new players and therapeutic avenues. Nat. Rev. Cancer 18, 51–63 (2018).
pubmed: 29192214 doi: 10.1038/nrc.2017.104
Polikanov, Y. S., Melnikov, S. V., Soll, D. & Steitz, T. A. Structural insights into the role of rRNA modifications in protein synthesis and ribosome assembly. Nat. Struct. Mol. Biol. 22, 342–344 (2015).
pubmed: 25775268 pmcid: 4401423 doi: 10.1038/nsmb.2992
Sharma, S. & Lafontaine, D. L. J. ‘View from a bridge’: a new perspective on eukaryotic rRNA base modification. Trends Biochem. Sci. 40, 560–575 (2015).
pubmed: 26410597 doi: 10.1016/j.tibs.2015.07.008
Monaco, P. L., Marcel, V., Diaz, J.-J. & Catez, F. 2′-O-Methylation of ribosomal RNA: towards an epitranscriptomic control of translation?. Biomolecules 8, 106 (2018).
pmcid: 6316387 doi: 10.3390/biom8040106
Massenet, S., Bertrand, E. & Verheggen, C. Assembly and trafficking of box C/D and H/ACA snoRNPs. RNA Biol. 14, 680–692 (2017).
pubmed: 27715451 doi: 10.1080/15476286.2016.1243646
Falaleeva, M., Welden, J. R., Duncan, M. J. & Stamm, S. C/D‐box snoRNAs form methylating and non‐methylating ribonucleoprotein complexes: old dogs show new tricks. Bioessays 39, 1600264 (2017).
doi: 10.1002/bies.201600264
Shubina, M. Y., Musinova, Y. R. & Sheval, E. V. Nucleolar methyltransferase fibrillarin: evolution of structure and functions. Biochem. Biokhimiia 81, 941–950 (2016).
doi: 10.1134/S0006297916090030
Rodriguez-Corona, U., Sobol, M., Rodriguez-Zapata, L. C., Hozak, P. & Castano, E. Fibrillarin from Archaea to human. Biol. Cell 107, 159–174 (2015).
pubmed: 25772805 doi: 10.1111/boc.201400077
Erales, J. et al. Evidence for rRNA 2′-O-methylation plasticity: control of intrinsic translational capabilities of human ribosomes. Proc. Natl Acad. Sci. USA 114, 12934–12939 (2017).
pubmed: 29158377 doi: 10.1073/pnas.1707674114 pmcid: 5724255
Kass, S., Tyc, K., Steitz, J. A. & Sollner-Webb, B. The U3 small nucleolar ribonucleoprotein functions in the first step of preribosomal RNA processing. Cell 60, 897–908 (1990).
pubmed: 2156625 doi: 10.1016/0092-8674(90)90338-F
Tessarz, P. et al. Glutamine methylation in histone H2A is an RNA-polymerase-I-dedicated modification. Nature 505, 564–568 (2014).
pubmed: 24352239 doi: 10.1038/nature12819
Li, D. et al. Activity dependent LoNA regulates translation by coordinating rRNA transcription and methylation. Nat. Commun. 9, 1726 (2018).
pubmed: 29712923 pmcid: 5928123 doi: 10.1038/s41467-018-04072-4
Iyer-Bierhoff, A. et al. SIRT7-dependent deacetylation of fibrillarin controls histone H2A methylation and rRNA synthesis during the cell cycle. Cell Rep. 25, 2946–2954.e5 (2018).
pubmed: 30540930 doi: 10.1016/j.celrep.2018.11.051
Ren, X. et al. Maintenance of nucleolar homeostasis by CBX4 alleviates senescence and osteoarthritis. Cell Rep. 26, 3643–3656.e7 (2019).
pubmed: 30917318 doi: 10.1016/j.celrep.2019.02.088
Nachmani, D. et al. Germline NPM1 mutations lead to altered rRNA 2′-O-methylation and cause dyskeratosis congenita. Nat. Genet. 51, 1518–1529 (2019).
pubmed: 31570891 pmcid: 6858547 doi: 10.1038/s41588-019-0502-z
Marcel, V. et al. p53 acts as a safeguard of translational control by regulating fibrillarin and rRNA methylation in cancer. Cancer Cell 24, 318–330 (2013).
pubmed: 24029231 pmcid: 7106277 doi: 10.1016/j.ccr.2013.08.013
Koh, C. M. et al. Alterations in nucleolar structure and gene expression programs in prostatic neoplasia are driven by the MYC oncogene. Am. J. Pathol. 178, 1824–1834 (2011).
pubmed: 21435462 pmcid: 3078425 doi: 10.1016/j.ajpath.2010.12.040
Su, H. et al. Elevated snoRNA biogenesis is essential in breast cancer. Oncogene 33, 1348–1358 (2014).
pubmed: 23542174 doi: 10.1038/onc.2013.89
Cao, R. et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298, 1039–1043 (2002).
pubmed: 12351676 doi: 10.1126/science.1076997
Margueron, R. & Reinberg, D. The Polycomb complex PRC2 and its mark in life. Nature 469, 343–349 (2011).
pubmed: 21248841 pmcid: 3760771 doi: 10.1038/nature09784
Plath, K. et al. Role of histone H3 lysine 27 methylation in X inactivation. Science 300, 131–135 (2003).
pubmed: 12649488 doi: 10.1126/science.1084274
Boyer, L. A. et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122, 947–956 (2005).
pubmed: 16153702 pmcid: 3006442 doi: 10.1016/j.cell.2005.08.020
Ezhkova, E. et al. Ezh2 orchestrates gene expression for the stepwise differentiation of tissue-specific stem cells. Cell 136, 1122–1135 (2009).
pubmed: 19303854 pmcid: 2716120 doi: 10.1016/j.cell.2008.12.043
Varambally, S. et al. The Polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419, 624–629 (2002).
pubmed: 12374981 doi: 10.1038/nature01075
Kleer, C. G. et al. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc. Natl Acad. Sci. USA 100, 11606–11611 (2003).
pubmed: 14500907 doi: 10.1073/pnas.1933744100 pmcid: 208805
Lee, S. T. et al. Context-specific regulation of NF-κB target gene expression by EZH2 in breast cancers. Mol. Cell 43, 798–810 (2011).
pubmed: 21884980 doi: 10.1016/j.molcel.2011.08.011
Xu, K. et al. EZH2 oncogenic activity in castration-resistant prostate cancer cells is Polycomb-independent. Science 338, 1465–1469 (2012).
pubmed: 23239736 pmcid: 3625962 doi: 10.1126/science.1227604
Zhao, Y. et al. EZH2 cooperates with gain-of-function p53 mutants to promote cancer growth and metastasis. EMBO J. 38, e99599 (2019).
pubmed: 30723117 pmcid: 6396169 doi: 10.15252/embj.201899599
Cao, Q. et al. The central role of EED in the orchestration of Polycomb group complexes. Nat. Commun. 5, 3127 (2014).
pubmed: 24457600 doi: 10.1038/ncomms4127
Han, Z. et al. Structural basis of EZH2 recognition by EED. Structure 15, 1306–1315 (2007).
pubmed: 17937919 doi: 10.1016/j.str.2007.08.007
Qin, W. et al. Quantitative time-resolved chemoproteomics reveals that stable O-GlcNAc regulates box C/D snoRNP biogenesis. Proc. Natl Acad. Sci. USA 114, E6749–E6758 (2017).
pubmed: 28760965 pmcid: 5565422
Dong, Z. W. et al. RTL-P: a sensitive approach for detecting sites of 2′-O-methylation in RNA molecules. Nucleic Acids Res. 40, e157 (2012).
pubmed: 22833606 pmcid: 3488209 doi: 10.1093/nar/gks698
Marchand, V., Blanloeil-Oillo, F., Helm, M. & Motorin, Y. Illumina-based RiboMethSeq approach for mapping of 2′-O-Me residues in RNA. Nucleic Acids Res. 44, e135 (2016).
pubmed: 27302133 pmcid: 5027498 doi: 10.1093/nar/gkw547
Ruggero, D. Translational control in cancer etiology. Cold Spring Harbor Perspect. Biol. 5, a012336 (2013).
doi: 10.1101/cshperspect.a012336
Walters, B. & Thompson, S. R. Cap-independent translational control of carcinogenesis. Front. Oncol. 6, 128 (2016).
pubmed: 27252909 pmcid: 4879784 doi: 10.3389/fonc.2016.00128
Van Eden, M. E., Byrd, M. P., Sherrill, K. W. & Lloyd, R. E. Demonstrating internal ribosome entry sites in eukaryotic mRNAs using stringent RNA test procedures. RNA 10, 720–730 (2004).
pubmed: 15037781 doi: 10.1261/rna.5225204
Gan, L. et al. Epigenetic regulation of cancer progression by EZH2: from biological insights to therapeutic potential. Biomark. Res. 6, 10 (2018).
pubmed: 29556394 pmcid: 5845366 doi: 10.1186/s40364-018-0122-2
Lechertier, T., Grob, A., Hernandez-Verdun, D. & Roussel, P. Fibrillarin and Nop56 interact before being co-assembled in box C/D snoRNPs. Exp. Cell Res. 315, 928–942 (2009).
pubmed: 19331828 doi: 10.1016/j.yexcr.2009.01.016
Mattson, G. et al. A practical approach to crosslinking. Mol. Biol. Rep. 17, 167–183 (1993).
pubmed: 8326953 doi: 10.1007/BF00986726
David, A. et al. Nuclear translation visualized by ribosome-bound nascent chain puromycylation. J. Cell Biol. 197, 45–57 (2012).
pubmed: 22472439 pmcid: 3317795 doi: 10.1083/jcb.201112145
Oertlin, C. et al. Generally applicable transcriptome-wide analysis of translation using anota2seq. Nucleic Acids Res. 47, e70 (2019).
pubmed: 30926999 pmcid: 6614820 doi: 10.1093/nar/gkz223
Larsson, O., Sonenberg, N. & Nadon, R. Identification of differential translation in genome wide studies. Proc. Natl Acad. Sci. USA 107, 21487–21492 (2010).
pubmed: 21115840 doi: 10.1073/pnas.1006821107 pmcid: 3003104
Zhao, J. et al. IRESbase: a comprehensive database of experimentally validated internal ribosome entry sites. Genomics Proteomics Bioinformatics 18, 129–139 (2020).
pubmed: 32512182 pmcid: 7646085 doi: 10.1016/j.gpb.2020.03.001
Krajewska, M. et al. Elevated expression of inhibitor of apoptosis proteins in prostate cancer. Clin. Cancer Res. 9, 4914–4925 (2003).
pubmed: 14581366
Lewis, S. M. & Holcik, M. IRES in distress: translational regulation of the inhibitor of apoptosis proteins XIAP and HIAP2 during cell stress. Cell Death Differ. 12, 547–553 (2005).
pubmed: 15818406 doi: 10.1038/sj.cdd.4401602
Holcik, M., Lefebvre, C., Yeh, C., Chow, T. & Korneluk, R. G. A new internal-ribosome-entry-site motif potentiates XIAP-mediated cytoprotection. Nat. Cell Biol. 1, 190–192 (1999).
pubmed: 10559907 doi: 10.1038/11109
Ross, A. E. et al. Tissue-based genomics augments post-prostatectomy risk stratification in a natural history cohort of intermediate- and high-risk men. Eur. Urol. 69, 157–165 (2016).
pubmed: 26058959 doi: 10.1016/j.eururo.2015.05.042
Kaur, H. B. et al. Association of tumor-infiltrating T-cell density with molecular subtype, racial ancestry and clinical outcomes in prostate cancer. Mod. Pathol. 31, 1539–1552 (2018).
pubmed: 29849114 pmcid: 6168349 doi: 10.1038/s41379-018-0083-x
Yang, Y. A. & Yu, J. EZH2, an epigenetic driver of prostate cancer. Protein Cell 4, 331–341 (2013).
pubmed: 23636686 pmcid: 4131440 doi: 10.1007/s13238-013-2093-2
Rothe, B. et al. Implication of the box C/D snoRNP assembly factor Rsa1p in U3 snoRNP assembly. Nucleic Acids Res. 45, 7455–7473 (2017).
pubmed: 28505348 pmcid: 5499572 doi: 10.1093/nar/gkx424
Li, Q. et al. Antihistamine drug ebastine inhibits cancer growth by targeting Polycomb group protein EZH2. Mol. Cancer Ther. 19, 2023–2033 (2020).
pubmed: 32855270 pmcid: 7541747 doi: 10.1158/1535-7163.MCT-20-0250
Kim, J. et al. Polycomb- and methylation-independent roles of EZH2 as a transcription activator. Cell Rep. 25, 2808–2820.e4 (2018).
pubmed: 30517868 pmcid: 6342284 doi: 10.1016/j.celrep.2018.11.035
Yu, Y. et al. Progesterone receptor expression during prostate cancer progression suggests a role of this receptor in stromal cell differentiation. Prostate 75, 1043–1050 (2015).
pubmed: 25833156 doi: 10.1002/pros.22988
Xie, N. et al. The expression of glucocorticoid receptor is negatively regulated by active androgen receptor signaling in prostate tumors. Int. J. Cancer 136, E27–E38 (2015).
pubmed: 25138562 doi: 10.1002/ijc.29147
Li, Z. F. & Lam, Y. W. A new rapid method for isolating nucleoli. Methods Mol. Biol. 1228, 35–42 (2015).
pubmed: 25311120 doi: 10.1007/978-1-4939-1680-1_4
Jia, G. et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat. Chem. Biol. 7, 885–887 (2011).
pubmed: 22002720 pmcid: 3218240 doi: 10.1038/nchembio.687
Marchand, V. et al. Next-generation sequencing-based RiboMethSeq protocol for analysis of tRNA 2′-O-methylation. Biomolecules 7, 13 (2017).
pmcid: 5372725 doi: 10.3390/biom7010013
Pichot, F. et al. Holistic optimization of bioinformatic analysis pipeline for detection and quantification of 2′-O-methylations in RNA by RiboMethSeq. Front. Genet. 11, 38 (2020).
pubmed: 32117451 pmcid: 7031861 doi: 10.3389/fgene.2020.00038
Poulin, F., Gingras, A. C., Olsen, H., Chevalier, S. & Sonenberg, N. 4E-BP3, a new member of the eukaryotic initiation factor 4E-binding protein family. J. Biol. Chem. 273, 14002–14007 (1998).
pubmed: 9593750 doi: 10.1074/jbc.273.22.14002
Holcik, M. & Korneluk, R. G. Functional characterization of the X-linked inhibitor of apoptosis (XIAP) internal ribosome entry site element: role of La autoantigen in XIAP translation. Mol. Cell Biol. 20, 4648–4657 (2000).
pubmed: 10848591 pmcid: 85872 doi: 10.1128/MCB.20.13.4648-4657.2000
Huez, I. et al. Two independent internal ribosome entry sites are involved in translation initiation of vascular endothelial growth factor mRNA. Mol. Cell Biol. 18, 6178–6190 (1998).
pubmed: 9774635 pmcid: 109205 doi: 10.1128/MCB.18.11.6178
Martineau, Y. et al. Internal ribosome entry site structural motifs conserved among mammalian fibroblast growth factor 1 alternatively spliced mRNAs. Mol. Cell Biol. 24, 7622–7635 (2004).
pubmed: 15314170 pmcid: 507008 doi: 10.1128/MCB.24.17.7622-7635.2004
Vagner, S. et al. Alternative translation of human fibroblast growth factor 2 mRNA occurs by internal entry of ribosomes. Mol. Cell Biol. 15, 35–44 (1995).
pubmed: 7799942 pmcid: 231905 doi: 10.1128/MCB.15.1.35
Meng, Z., Jackson, N. L., Shcherbakov, O. D., Choi, H. & Blume, S. W. The human IGF1R IRES likely operates through a Shine–Dalgarno-like interaction with the G961 loop (E-site) of the 18S rRNA and is kinetically modulated by a naturally polymorphic polyU loop. J. Cell Biochem. 110, 531–544 (2010).
pubmed: 20432247 pmcid: 2997104
Nanbru, C. et al. Alternative translation of the proto-oncogene c-Myc by an internal ribosome entry site. J. Biol. Chem. 272, 32061–32066 (1997).
pubmed: 9405401 doi: 10.1074/jbc.272.51.32061
McGlincy, N. J. & Ingolia, N. T. Transcriptome-wide measurement of translation by ribosome profiling. Methods 126, 112–129 (2017).
pubmed: 28579404 pmcid: 5582988 doi: 10.1016/j.ymeth.2017.05.028
Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. PEAR: a fast and accurate Illumina paired-end read merger. Bioinformatics 30, 614–620 (2014).
pubmed: 24142950 doi: 10.1093/bioinformatics/btt593
Shen, W., Le, S., Li, Y. & Hu, F. SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS ONE 11, e0163962 (2016).
pubmed: 27706213 pmcid: 5051824 doi: 10.1371/journal.pone.0163962
Trapnell, C., Pachter, L. & Salzberg, S. L. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105–1111 (2009).
pubmed: 19289445 pmcid: 2672628 doi: 10.1093/bioinformatics/btp120
Anders, S., Pyl, P. T. & Huber, W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).
pubmed: 25260700
Yu, G., Wang, L. G., Han, Y. & He, Q. Y. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics 16, 284–287 (2012).
pubmed: 22455463 pmcid: 3339379 doi: 10.1089/omi.2011.0118
Chen, K. et al. DANPOS: dynamic analysis of nucleosome position and occupancy by sequencing. Genome Res. 23, 341–351 (2013).
pubmed: 23193179 pmcid: 3561875 doi: 10.1101/gr.142067.112
Li, D., Hsu, S., Purushotham, D., Sears, R. L. & Wang, T. WashU Epigenome browser update 2019. Nucleic Acids Res. 47, W158–W165 (2019).
pubmed: 31165883 pmcid: 6602459 doi: 10.1093/nar/gkz348
Ren, J. et al. DOG 1.0: illustrator of protein domain structures. Cell Res. 19, 271–273 (2009).
pubmed: 19153597 doi: 10.1038/cr.2009.6

Auteurs

Yang Yi (Y)

Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.

Yanqiang Li (Y)

Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA, USA.
Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
Center for Bioinformatics and Computational Biology, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA.

Qingshu Meng (Q)

Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.

Qiaqia Li (Q)

Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.

Fuxi Li (F)

RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangzhou, China.

Bing Lu (B)

RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangzhou, China.

Jiangchuan Shen (J)

Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA.

Ladan Fazli (L)

Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, British Columbia, Canada.
Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada.

Dongyu Zhao (D)

Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA, USA.
Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
Center for Bioinformatics and Computational Biology, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA.

Chao Li (C)

Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.

Weihua Jiang (W)

Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, USA.

Rui Wang (R)

Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, USA.

Qipeng Liu (Q)

Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, USA.

Aileen Szczepanski (A)

Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.

Qianru Li (Q)

Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.

Wei Qin (W)

School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China.

Adam B Weiner (AB)

Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.

Tamara L Lotan (TL)

Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

Zhe Ji (Z)

Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA.

Sundeep Kalantry (S)

Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.

Lu Wang (L)

Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.

Edward M Schaeffer (EM)

Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.

Hengyao Niu (H)

Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA.

Xuesen Dong (X)

Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, British Columbia, Canada.
Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada.

Wei Zhao (W)

RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangzhou, China.

Kaifu Chen (K)

Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA, USA. kaifu.chen@childrens.harvard.edu.
Department of Pediatrics, Harvard Medical School, Boston, MA, USA. kaifu.chen@childrens.harvard.edu.
Center for Bioinformatics and Computational Biology, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA. kaifu.chen@childrens.harvard.edu.

Qi Cao (Q)

Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA. qi.cao@northwestern.edu.
Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA. qi.cao@northwestern.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH