MRI correlates of cognitive improvement after home-based EEG neurofeedback training in patients with multiple sclerosis: a pilot study.
Cognitive training
DTI
Multiple sclerosis
Neurofeedback
Resting-state fMRI
Journal
Journal of neurology
ISSN: 1432-1459
Titre abrégé: J Neurol
Pays: Germany
ID NLM: 0423161
Informations de publication
Date de publication:
Oct 2021
Oct 2021
Historique:
received:
05
02
2021
accepted:
23
03
2021
revised:
22
03
2021
pubmed:
1
4
2021
medline:
29
9
2021
entrez:
31
3
2021
Statut:
ppublish
Résumé
Neurofeedback training may improve cognitive function in patients with neurological disorders. However, the underlying cerebral mechanisms of such improvements are poorly understood. Therefore, we aimed to investigate MRI correlates of cognitive improvement after EEG-based neurofeedback training in patients with MS (pwMS). Fourteen pwMS underwent ten neurofeedback training sessions within 3-4 weeks at home using a tele-rehabilitation system. Half of the pwMS (N = 7, responders) learned to self-regulate sensorimotor rhythm (SMR, 12-15 Hz) by visual feedback and improved cognitively after training, whereas the remainder (non-responders, n = 7) did not. Diffusion-tensor imaging and resting-state fMRI of the brain was performed before and after training. We analyzed fractional anisotropy (FA) and functional connectivity (FC) of the default-mode, sensorimotor (SMN) and salience network (SAL). At baseline, responders and non-responders were comparable regarding sex, age, education, disease duration, physical and cognitive impairment, and MRI parameters. After training, compared to non-responders, responders showed increased FA and FC within the SAL and SMN. Cognitive improvement correlated with increased FC in SAL and a correlation trend with increased FA was observed. This exploratory study suggests that successful neurofeedback training may not only lead to cognitive improvement, but also to increases in brain microstructure and functional connectivity.
Identifiants
pubmed: 33786666
doi: 10.1007/s00415-021-10530-9
pii: 10.1007/s00415-021-10530-9
pmc: PMC8463344
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
3808-3816Informations de copyright
© 2021. The Author(s).
Références
Nat Rev Neurosci. 2017 Feb;18(2):86-100
pubmed: 28003656
Clin EEG Neurosci. 2009 Jul;40(3):173-9
pubmed: 19715180
Clin Neurophysiol. 2019 Nov;130(11):2124-2131
pubmed: 31546180
PLoS One. 2017 May 11;12(5):e0177177
pubmed: 28493924
Front Neurosci. 2017 Mar 13;11:115
pubmed: 28348512
Arch Phys Med Rehabil. 2018 Feb;99(2):390-407
pubmed: 28958607
Cochrane Database Syst Rev. 2016 Sep 01;9:CD002293
pubmed: 27581994
Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13040-5
pubmed: 19620724
Cochrane Database Syst Rev. 2014 Feb 11;(2):CD009131
pubmed: 24515630
Neuroscience. 2018 May 15;378:175-188
pubmed: 28596116
Clin Neurophysiol. 2015 Jan;126(1):82-95
pubmed: 24794517
Sleep. 2008 Oct;31(10):1401-8
pubmed: 18853937
J Neuroeng Rehabil. 2015 Dec 01;12:107
pubmed: 26625906
Neuroimage Clin. 2019;22:101716
pubmed: 30798167
Neuroimage. 2015 May 15;112:267-277
pubmed: 25770991
Front Syst Neurosci. 2016 Dec 27;10:104
pubmed: 28082874
Appl Psychophysiol Biofeedback. 2015 Mar;40(1):1-8
pubmed: 25362584
Neuron. 2016 Dec 7;92(5):1093-1105
pubmed: 27866799
J Int Neuropsychol Soc. 2017 Oct;23(9-10):832-842
pubmed: 29198279
Clin EEG Neurosci. 2013 Oct;44(4):265-72
pubmed: 23536382
Clin Electroencephalogr. 2000 Jan;31(1):45-55
pubmed: 10638352
Neurosci Biobehav Rev. 2014 Jul;44:124-41
pubmed: 24125857
Front Hum Neurosci. 2014 Dec 18;8:1008
pubmed: 25566028
Neuroimage. 2019 Jul 1;194:283-290
pubmed: 30898654
J Neurol Sci. 2015 Jul 15;354(1-2):1-9
pubmed: 25998261
NeuroRehabilitation. 2014;35(3):481-4
pubmed: 25238859
Neuroimage. 2016 Jan 1;124(Pt A):806-812
pubmed: 26419389
Int J Psychophysiol. 2020 Aug;154:67-79
pubmed: 30825477
Neurology. 2018 Feb 6;90(6):278-288
pubmed: 29343470
Neurophysiol Clin. 2015 Dec;45(6):423-33
pubmed: 26553293