Maximum levels of global phylogenetic diversity efficiently capture plant services for humankind.
Journal
Nature ecology & evolution
ISSN: 2397-334X
Titre abrégé: Nat Ecol Evol
Pays: England
ID NLM: 101698577
Informations de publication
Date de publication:
05 2021
05 2021
Historique:
received:
03
12
2020
accepted:
08
02
2021
pubmed:
31
3
2021
medline:
20
5
2021
entrez:
30
3
2021
Statut:
ppublish
Résumé
The divergent nature of evolution suggests that securing the human benefits that are directly provided by biodiversity may require counting on disparate lineages of the Tree of Life. However, quantitative evidence supporting this claim is still tenuous. Here, we draw on a global review of plant-use records demonstrating that maximum levels of phylogenetic diversity capture significantly greater numbers of plant-use records than random selection of taxa. Our study establishes an empirical foundation that links evolutionary history to human wellbeing, and it will serve as a discussion baseline to promote better-grounded accounts of the services that are directly provided by biodiversity.
Identifiants
pubmed: 33782579
doi: 10.1038/s41559-021-01414-2
pii: 10.1038/s41559-021-01414-2
doi:
Banques de données
figshare
['10.6084/m9.figshare.13625546.v1']
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
583-588Commentaires et corrections
Type : CommentIn
Références
Faith, D. P. et al. Evosystem services: an evolutionary perspective on the links between biodiversity and human well-being. Curr. Opin. Environ. Sust. 2, 66–74 (2010).
doi: 10.1016/j.cosust.2010.04.002
Cámara-Leret, R. et al. Fundamental species traits explain provisioning services of tropical American palms. Nat. Plants 3, 16220 (2017).
pubmed: 28112717
doi: 10.1038/nplants.2016.220
Oka, C., Aiba, M. & Nakashizuka, T. Phylogenetic clustering in beneficial attributes of tree species directly linked to provisioning, regulating and cultural ecosystem services. Ecol. Indic. 96, 477–495 (2019).
doi: 10.1016/j.ecolind.2018.09.035
Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61, 1–10 (1992).
doi: 10.1016/0006-3207(92)91201-3
Vane-Wright, R. I., Humphries, C. J. & Williams, P. H. What to protect?—Systematics and the agony of choice. Biol. Conserv. 55, 235–254 (1991).
doi: 10.1016/0006-3207(91)90030-D
Crozier, R. H. Genetic diversity and the agony of choice. Biol. Conserv. 61, 11–15 (1992).
doi: 10.1016/0006-3207(92)91202-4
Tucker, C. M. et al. Assessing the utility of conserving evolutionary history. Biol. Rev. 94, 1740–1760 (2019).
pubmed: 31149769
doi: 10.1111/brv.12526
Owen, N. R., Gumbs, R., Gray, C. L. & Faith, D. P. Global conservation of phylogenetic diversity captures more than just functional diversity. Nat. Commun. 10, 859 (2019).
pubmed: 30787282
pmcid: 6382770
doi: 10.1038/s41467-019-08600-8
Mazel, F. et al. Prioritizing phylogenetic diversity captures functional diversity unreliably. Nat. Commun. 9, 2888 (2018).
pubmed: 30038259
pmcid: 6056549
doi: 10.1038/s41467-018-05126-3
Mazel, F. et al. Reply to: ‘Global conservation of phylogenetic diversity captures more than just functional diversity’. Nat. Commun. 10, 858 (2019).
pubmed: 30787308
pmcid: 6382820
doi: 10.1038/s41467-019-08603-5
Forest, F. et al. Preserving the evolutionary potential of floras in biodiversity hotspots. Nature 445, 757–760 (2007).
pubmed: 17301791
doi: 10.1038/nature05587
Cook, F. E. M. Economic Botany Data Collection Standard (International Working Group on Taxonomic Databases for Plant Sciences, Royal Botanic Gardens, UK, 1995).
Smith, S. A. & Brown, J. W. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 105, 302–314 (2018).
pubmed: 29746720
doi: 10.1002/ajb2.1019
Jin, Y. & Qian, H. V. PhyloMaker: an R package that can generate very large phylogenies for vascular plants. Ecography 42, 1353–1359 (2019).
doi: 10.1111/ecog.04434
Mabberley, D. J. Mabberley’s Plant-book: A Portable Dictionary of Plants, Their Classification and Uses 4th edn (Cambridge Univ. Press, 2017).
Cox, P. A. Will tribal knowledge survive the millennium? Science 287, 44–45 (2000).
pubmed: 10644221
doi: 10.1126/science.287.5450.44
Cámara-Leret, R., Paniagua-Zambrana, N., Balslev, H. & Macía, M. J. Ethnobotanical knowledge is vastly under-documented in northwestern South America. PLoS ONE 9, e85794 (2014).
pubmed: 24416449
pmcid: 3887111
doi: 10.1371/journal.pone.0085794
Cámara-Leret, R. & Dennehy, Z. Information gaps in indigenous and local knowledge for science-policy assessments. Nat. Sustain. 2, 736–741 (2019).
doi: 10.1038/s41893-019-0324-0
Novotny, V. et al. Low host specificity of herbivorous insects in a tropical forest. Nature 416, 841–844 (2002).
pubmed: 11976681
doi: 10.1038/416841a
Gilbert, G. S., Magarey, R., Suiter, K. & Webb, C. O. Evolutionary tools for phytosanitary risk analysis: phylogenetic signal as a predictor of host range of plant pests and pathogens. Evol. Appl. 5, 869–878 (2012).
pubmed: 23346231
pmcid: 3552404
doi: 10.1111/j.1752-4571.2012.00265.x
Calatayud, J. et al. Geography and major host evolutionary transitions shape the resource use of plant parasites. Proc. Natl Acad. Sci. USA 113, 9840–9845 (2016).
pubmed: 27535932
doi: 10.1073/pnas.1608381113
Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eai9214 (2017).
doi: 10.1126/science.aai9214
Lehmann, P. et al. Complex responses of global insect pests to climate warming. Front. Ecol. Environ. 18, 141–150 (2020).
doi: 10.1002/fee.2160
de Lucena, R. F. P. et al. The ecological apparency hypothesis and the importance of useful plants in rural communities from Northeastern Brazil: an assessment based on use value. J. Environ. Manag. 96, 106–115 (2012).
doi: 10.1016/j.jenvman.2011.09.001
Menendez-Baceta, G. et al. The importance of cultural factors in the distribution of medicinal plant knowledge: a case study in four Basque regions. J. Ethnopharmacol. 161, 116–127 (2015).
pubmed: 25499311
doi: 10.1016/j.jep.2014.12.007
Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 33, 475–505 (2002).
doi: 10.1146/annurev.ecolsys.33.010802.150448
Global Information on Scoping for the Thematic Assessment of Sustainable Use of Wild Species (Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, 2018); https://ipbes.net/sustainable-use-wild-species-assessment
Karki, M., Senaratna Sellamuttu, S., Okayasu, S. & Suzuki, W. (eds) Regional Assessment Report on Biodiversity and Ecosystem Services for Asia and the Pacific (Secretariat of the IPBES, 2018).
Pardo-de-Santayana, M. & Macía, M. The benefits of traditional knowledge. Nature 518, 487–488 (2015).
pubmed: 25719661
doi: 10.1038/518487a
Díaz, S. et al. Assessing nature’s contributions to people. Science 359, 270–272 (2018).
pubmed: 29348221
doi: 10.1126/science.aap8826
Antonelli, A. et al. State of the World’s Plants and Fungi 2020 (Royal Botanic Gardens, Kew, 2020).
Ulian, T. et al. Unlocking plant resources to support food security and promote sustainable agriculture. Plants People Planet 2, 421–445 (2020).
doi: 10.1002/ppp3.10145
Plants of the World Online (Royal Botanic Gardens, Kew, 2021); http://www.plantsoftheworldonline.org/
Zanne, A. E. et al. Three keys to the radiation of angiosperms into freezing environments. Nature 506, 89–92 (2014).
pubmed: 24362564
doi: 10.1038/nature12872
The Plant List, version 1.1 (The Plant List, 2013); http://www.theplantlist.org/
Rangel, T. F. et al. Phylogenetic uncertainty revisited: implications for ecological analyses. Evolution 69, 1301–1312 (2015).
pubmed: 25800868
doi: 10.1111/evo.12644
Federhen, S. The NCBI taxonomy database. Nucleic Acids Res. 40, D136–D143 (2012).
pubmed: 22139910
doi: 10.1093/nar/gkr1178
Hörandl, E. & Stuessy, T. F. Paraphyletic groups as natural units of biological classification. Taxon 59, 1641–1653 (2010).
doi: 10.1002/tax.596001
Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).
doi: 10.1111/j.2041-210X.2011.00169.x
Rodrigues, A. S. L. & Gaston, K. J. Maximising phylogenetic diversity in the selection of networks of conservation areas. Biol. Conserv. 105, 103–111 (2002).
doi: 10.1016/S0006-3207(01)00208-7
Bordewich, M., Rodrigo, A. G. & Semple, C. Selecting taxa to save or sequence: desirable criteria and a greedy solution. Syst. Biol. 57, 825–834 (2008).
pubmed: 19085326
doi: 10.1080/10635150802552831
Pielou, E. C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 13, 131–144 (1966).
doi: 10.1016/0022-5193(66)90013-0
Kembel, S. W. Disentangling niche and neutral influences on community assembly: assessing the performance of community phylogenetic structure tests. Ecol. Lett. 12, 949–960 (2009).
pubmed: 19702749
doi: 10.1111/j.1461-0248.2009.01354.x
R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).
Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).
pubmed: 20395285
doi: 10.1093/bioinformatics/btq166
Brummitt, R. K. World Geographical Scheme for Recording Plant Distributions 2nd edn (International Working Group on Taxonomic Databases for Plant Sciences, 2001).
Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19, 134–143 (2010).
doi: 10.1111/j.1466-8238.2009.00490.x