An integrative view on vacuolar pH homeostasis in Arabidopsis thaliana: Combining mathematical modeling and experimentation.
Antiporters
/ genetics
Arabidopsis
/ metabolism
Arabidopsis Proteins
/ genetics
Biological Transport
/ physiology
Calcium
Cation Transport Proteins
/ genetics
Computer Simulation
Endosomes
/ genetics
Gene Expression Regulation, Enzymologic
/ drug effects
Gene Expression Regulation, Plant
/ drug effects
Homeostasis
/ physiology
Hydrogen-Ion Concentration
Macrolides
/ pharmacology
Models, Biological
Mutation
Plant Roots
/ drug effects
Vacuolar Proton-Translocating ATPases
/ genetics
Vacuoles
/ metabolism
trans-Golgi Network
/ physiology
Arabidopsis thaliana
V-ATPases
mathematical modeling
vacuolar pH homeostasis
Journal
The Plant journal : for cell and molecular biology
ISSN: 1365-313X
Titre abrégé: Plant J
Pays: England
ID NLM: 9207397
Informations de publication
Date de publication:
06 2021
06 2021
Historique:
revised:
27
02
2021
received:
08
10
2020
accepted:
10
03
2021
pubmed:
30
3
2021
medline:
16
12
2021
entrez:
29
3
2021
Statut:
ppublish
Résumé
The acidification of plant vacuoles is of great importance for various physiological processes, as a multitude of secondary active transporters utilize the proton gradient established across the vacuolar membrane. Vacuolar-type H
Substances chimiques
Antiporters
0
Arabidopsis Proteins
0
Cation Transport Proteins
0
Macrolides
0
calcium-hydrogen antiporters
0
concanamycin A
80890-47-7
Vacuolar Proton-Translocating ATPases
EC 3.6.1.-
Calcium
SY7Q814VUP
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1541-1556Informations de copyright
© 2021 Society for Experimental Biology and John Wiley & Sons Ltd.
Références
Andersen, A.Z., Carvalho, A.L., Neves, A.R., Santos, H., Kummer, U. & Olsen, L.F. (2009) The metabolic pH response in Lactococcus lactis: an integrative experimental and modelling approach. Computational biology and chemistry, 33(1), 71-83.
Anthonisen, A.N., Clausen, J.D. & Andersen, J.P. (2006) Mutational analysis of the conserved TGES loop of sarcoplasmic reticulum Ca2+-ATPase. Journal of Biological Chemistry, 281(42), 31572-31582.
Appelhagen, I., Nordholt, N., Seidel, T., Spelt, K., Koes, R., Quattrochio, F. et al. (2015) Transparent Testa 13 is a tonoplast p3a-ATPase required for vacuolar deposition of proanthocyanidins in Arabidopsis thaliana seeds. The Plant Journal, 82(5), 840-849.
Barthe, P. & Vaillant, V. (1993) Changes in the buffering capacity of cell sap in senescing rose petals. Scientia horticulturae, 54(2), 165-174.
Baxter, I.R., Young, J.C., Armstrong, G., Foster, N., Bogenschutz, N., Cordova, T. et al. (2005) A plasma membrane H+-ATPase is required for the formation of proanthocyanidins in the seed coat endothelium of Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 102(7), 2649-2654.
Benabe, J.E., Echegoyen, L.A. & Martínez-Maldonado, M. (1986) Mechanism of inhibition of glycolysis by vanadate. In: Massry, S.G., Olmer, M. & Ritz, E. (Eds.), Phosphate and Mineral Homeostasis. Boston, MA: Springer US, pp. 517-528.
Bowman, E.J., Graham, L.A., Stevens, T.H. & Bowman, B.J. (2004) The Bafilomycin/Concanamycin binding site in subunit c of the V-ATPases from Neurospora crassa and Saccharomyces cerevisiae. Journal of Biological Chemistry, 279(32), 33131-33138.
Briere, C., Xiong, T.C., Mazars, C. & Ranjeva, R. (2006) Autonomous regulation of free Ca2+ concentrations in isolated plant cell nuclei: a mathematical analysis. Cell Calcium, 39(4), 293-303.
Cantley, L.C., Resh, M.D. & Guidotti, G. (1978) Vanadate inhibits the red cell (Na+, K+) ATPase from the cytoplasmic side. Nature, 272(5653), 552-554.
Carter, C., Pan, S., Zouhar, J., Avila, E.L., Girke, T. & Raikhel, N.V. (2004) The vegetative vacuole proteome of Arabidopsis thaliana reveals predicted and unexpected proteins. The plant cell, 16(12), 3285-3303.
Chebli, Y., Kaneda, M., Zerzour, R. & Geitmann, A. (2012) The cell wall of the Arabidopsis pollen tube - spatial distribution, recycling, and network formation of polysaccharides. Plant Physiology, 160(4), 1940-1955.
Clausen, J.D., Bublitz, M., Arnou, B., Olesen, C., Andersen, J.P., Moller, J.V. et al. (2016) Crystal structure of the vanadate-inhibited Ca2+-ATPase. Structure, 24(4), 617-623.
Davies, J. (1997) The bioenergetics of vacuolar H+ pumps. Advances in Botanical Research 25, 339-363.Elsevier, London, UK and New York, USA
Dettmer, J., Hong-Hermesdorf, A., Stierhof, Y.-D. & Schumacher, K. (2006) Vacuolar H+-ATPase activity is required for endocytic and secretory trafficking in Arabidopsis. The Plant Cell, 18(3), 715-730.
Dhonukshe, P., Aniento, F., Hwang, I., Robinson, D.G., Mravec, J., Stierhof, Y.-D. et al. (2007) Clathrin-mediated constitutive endocytosis of pin auxin efflux carriers in Arabidopsis. Current Biology, 17(6), 520-527.
Di Sansebastiano, G.P., Barozzi, F., Piro, G., Denecke, J. & de Marcos Lousa, C. (2018) Trafficking routes to the plant vacuole: connecting alternative and classical pathways. Journal of experimental botany, 69(1), 79-90.
Dindas, J., Dreyer, I., Huang, S., Hedrich, R. & Roelfsema, M.R.G. (2021) A voltage-dependent Ca2+-homeostat operates in the plant vacuolar membrane. New Phytologist. https://doi.org/10.1111/nph.17272.
Eberhart, R. & Kennedy, J. (1995) Particle swarm optimization. Proceedings of the IEEE International Conference on Neural Networks, 4, 1942-1948.
Feraru, E., Paciorek, T., Feraru, M.I., Zwiewka, M., De Groodt, R., De Rycke, R. et al. (2010) The AP-3 - adaptin mediates the biogenesis and function of lytic vacuoles in Arabidopsis. The Plant Cell, 22(8), 2812-2824.
Ferjani, A., Segami, S., Horiguchi, G., Muto, Y., Maeshima, M. & Tsukaya, H. (2011) Keep an eye on PPi: the vacuolar-type H+-pyrophosphatase regulates postgerminative development in Arabidopsis. The Plant Cell, 23(8), 2895-2908.
Ferjani, A., Segami, S., Horiguchi, G., Sakata, A., Maeshima, M. & Tsukaya, H. (2012) Regulation of pyrophosphate levels by H+-PPase is central for proper resumption of early plant development. Plant signaling & behavior, 7(1), 38-42.
Finka, A. & Goloubinoff, P. (2013) Proteomic data from human cell cultures refine mechanisms of chaperone-mediated protein homeostasis. Cell Stress and Chaperones, 18(5), 591-605.
Gaxiola, R.A., Palmgren, M.G. & Schumacher, K. (2007) Plant proton pumps. FEBS letters, 581(12), 2204-2214.
Goldberg, R.N., Kishore, N. & Lennen, R.M. (2002) Thermodynamic quantities for the ionization reactions of buffers. Journal of physical and chemical reference data, 31(2), 231-370.
Gout, E., Bligny, R. & Douce, R. (1992) Regulation of intracellular pH values in higher plant cells. Carbon-13 and phosphorus-31 nuclear magnetic resonance studies. Journal of Biological Chemistry, 267(20), 13903-13909.
Guern, J., Felle, H., Mathieu, Y. & Kurkdjian, A. (1991) Regulation of intracellular pH in plant cells. International Review of Cytology 127, 111-173.Elsevier, San Diego, USA
Hildebrandt, T.M., Nesi, A.N., Araujo, W.L. & Braun, H.-P. (2015) Amino acid catabolism in plants. Molecular plant, 8(11), 1563-1579.
Hilleary, R., Paez-Valencia, J., Vens, C., Toyota, M., Palmgren, M. & Gilroy, S. (2020) Tonoplast-localized Ca2+ pumps regulate Ca2+ signals during pattern-triggered immunity in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 117, 18849-18857.
Hirota, S., Pertens, E. & Janssen, L.J. (2007) The reverse mode of the Na+/Ca2+ exchanger provides a source of Ca2+ for store refilling following agonist-induced Ca2+ mobilization. American Journal of Physiology-Lung Cellular and Molecular Physiology, 292(2), 438-447.
Holzheu, P., Grosseholz, R. & Kummer, U. (2021) Impact of explicit area scaling on kinetic models involving multiple compartments. BMC Bioinformatics, 22(1), 1-12.
Hoops, S., Sahle, S., Gauges, R., Lee, C., Pahle, J., Simus, N. et al. (2006) Copasi - a complex pathway simulator. Bioinformatics, 22(24), 3067-3074.
Huss, M., Ingenhorst, G., König, S., Gaßel, M., Dröse, S., Zeeck, A. et al. (2002) Concanamycin A, the specific inhibitor of V-ATPases, binds to the Vo subunit c. Journal of Biological Chemistry, 277(43), 40544-40548.
Ishihara, H., Obata, T., Sulpice, R., Fernie, A.R. & Stitt, M. (2015) Quantifying protein synthesis and degradation in Arabidopsis by dynamic 13CO2 labeling and analysis of enrichment in individual amino acids in their free pools and in protein. Plant Physiology, 168(1), 74-93.
Jaquinod, M., Villiers, F., Kieffer-Jaquinod, S., Hugouvieux, V., Bruley, C., Garin, J. et al. (2007) A proteomics dissection of Arabidopsis thaliana vacuoles isolated from cell culture. Molecular & Cellular Proteomics, 6(3), 394-412.
Johnson, M.A., von Besser, K., Zhou, Q., Smith, E., Aux, G., Patton, D. et al. (2004) Arabidopsis hapless mutations define essential gametophytic functions. Genetics, 168(2), 971-982.
Jung, S.Y., Park, Y.J., Park, Y.J., Cha, S.H., Lee, M.Z. & Suh, C.K. (2007) Na+-Ca2+ exchanger modulates Ca2+ content in intracellular Ca2+ stores in rat osteoblasts. Experimental & molecular medicine, 39(4), 458-468.
Kader, M.A. & Lindberg, S. (2010) Cytosolic calcium and pH signaling in plants under salinity stress. Plant signaling & behavior, 5(3), 233-238.
Kahm, M., Navarrete, C., Llopis-Torregrosa, V., Herrera, R., Barreto, L., Yenush, L. et al. (2012) Potassium starvation in yeast: mechanisms of homeostasis revealed by mathematical modeling. PLoS computational biology, 8(6), 1002548.
Kargacin, G.J. (2003) Responses of Ca2+-binding proteins to localized, transient changes in intracellular [Ca2+]. Journal of theoretical biology, 221(2), 245-258.
Korngreen, A., Gold'shtein, V. & Priel, Z. (1997) A realistic model of biphasic calcium transients in electrically nonexcitable cells. Biophysical journal, 73(2), 659-673.
Krebs, M., Beyhl, D., Goerlich, E., Al-Rasheid, K.A., Marten, I., Stierhof, Y.-D. et al. (2010) Arabidopsis V-ATPase activity at the tonoplast is required for efficient nutrient storage but not for sodium accumulation. Proceedings of the National Academy of Sciences, 107(7), 3251-3256.
Kriegel, A., Andrés, Z., Medzihradszky, A., Krüger, F., Scholl, S., Delang, S. et al. (2015) Job sharing in the endomembrane system: vacuolar acidification requires the combined activity of V-ATPase and V-PPase. The Plant Cell, 27(12), 3383-3396.
Krüger, F. (2017) Vacuole biogenesis in Arabidopsis thaliana. PhD thesis
Lauer, M.J., Blevins, D.G. & Sierzputowska-Gracz, H. (1989) 31p-nuclear magnetic resonance determination of phosphate compartmentation in leaves of reproductive soybeans (Glycine max l.) as affected by phosphate nutrition. Plant Physiology, 89(4), 1331-1336.
Li, L., Nelson, C.J., Troesch, J., Castleden, I., Huang, S. & Millar, A.H. (2017) Protein degradation rate in Arabidopsis thaliana leaf growth and development. The Plant Cell, 29(2), 207-228.
Liu, H., Zhang, R., Yao, X., Liu, M., Hu, Z. & Fan, B.T. (2004) Prediction of the isoelectric point of an amino acid based on ga-pls and svms. Journal of chemical information and computer sciences, 44(1), 161-167.
Luo, Y.u., Scholl, S., Doering, A., Zhang, Y.i., Irani, N.G., Di Rubbo, S. et al. (2015) V-ATPase activity in the TGN/EE is required for exocytosis and recycling in Arabidopsis. Nature plants, 1(7), 1-10.
Lupanga, U., Roehrich, R., Askani, J., Hilmer, S., Kiefer, C., Krebs, M. et al. (2020) The Arabidopsis V-ATPase is localized to the TGN/EE via a seed plant-specific motif. Elife, 9, 60568.
Lüttge, U. & Ratajczak, R. (1997) The physiology, biochemistry and molecular biology of the plant vacuolar ATPase. Advances in Botanical Research. 25, London, UK and New York, USA: Elsevier, pp. 253-296.
Madshus, I.H. (1988) Regulation of intracellular ph in eukaryotic cells. Biochemical journal, 250(1), 1.
Marshansky, V. & Futai, M. (2008) The V-type H+-ATPase in vesicular trafficking: targeting, regulation and function. Current opinion in cell biology, 20(4), 415-426.
Martiniere, A., Bassil, E., Jublanc, E., Alcon, C., Reguera, M., Sentenac, H. et al. (2013) In vivo intracellular pH measurements in Tobacco and Arabidopsis reveal an unexpected pH gradient in the endomembrane system. The Plant Cell, 25(10), 4028-4043.
Martinoia, E. (1992) Transport processes in vacuoles of higher plants. Botanica acta, 105(4), 232-245.
Martinoia, E. (2018) Vacuolar transporters - companions on a longtime journey. Plant physiology, 176(2), 1384-1407.
Martinoia, E., Meyer, S., De Angeli, A. & Nagy, R. (2012) Vacuolar transporters in their physiological context. Annual Review of Plant Biology, 63(1), 183-213
Martinoia, E. & Rentsch, D. (1994) Malate compartmentation-responses to a complex metabolism. Annual review of plant biology, 45(1), 447-467.
Matsuura-Endo, C., Maeshima, M. & Yoshida, S. (1990) Subunit composition of vacuolar membrane H+-ATPase from mung bean. European journal of biochemistry, 187(3), 745-751.
Mogami, H., Gardner, J., Gerasimenko, O.V., Camello, P., Petersen, O.H. & Tepikin, A.V. (1999) Calcium binding capacity of the cytosol and endoplasmic reticulum of mouse pancreatic acinar cells. The Journal of physiology, 518(2), 463-467.
Moriyasu, Y., Shimmen, T. & Tazawa, M. (1984) Electric characteristics of the vacuolar membrane of Chara in relation to phv regulation. Cell structure and function, 9(3), 235-246.
Niñoles, R., Rubio, L., García-Sánchez, M.J., Fernández, J.A., Bueso, E., Alejandro, S. & Serrano, R. (2013) A dominant-negative form of Arabidopsis AP-3 β-adaptin improves intracellular pH homeostasis. The Plant Journal, 74, 557-568.
Nishimura, M. & Beevers, H. (1979) Hydrolysis of protein in vacuoles isolated from higher plant tissue. Nature, 277(5695), 412-413.
Park, M., Song, K., Reichardt, I., Kim, H., Mayer, U., Stierhof, Y.-D. et al. (2013) Arabidopsis m-adaptin subunit ap1m of adaptor protein complex 1 mediates late secretory and vacuolar traffic and is required for growth. Proceedings of the National Academy of Sciences, 110(25), 10318-10323.
Patel, S. & Docampo, R. (2010) Acidic calcium stores open for business: expanding the potential for intracellular Ca2+ signaling. Trends in cell biology, 20(5), 277-286.
Pedrazzini, E., Komarova, N.Y., Rentsch, D. & Vitale, A. (2013) Traffic routes and signals for the tonoplast. Traffic, 14(6), 622-628.
Petzold, L. & Hindmarsh, A. (1997) Lsoda (Livermore solver of ordinary differential equations). Computing and Mathematics Research Division, Lawrence Livermore National Laboratory, Livermore, CA 24
Pick, U. (1982) The interaction of vanadate ions with the Ca-ATPase from sarcoplasmic reticulum. Journal of Biological Chemistry, 257(11), 6111-6119.
Pittman, J.K., Bonza, M.C. & De Michelis, M.I. (2011) Ca2+ pumps and Ca2+ antiporters in plant development. In: Geisler, M. & Venema, K. (Eds.), Transporters and Pumps in Plant Signaling. Berlin, Germany: Springer, pp. 133-161.
Ratajczak, R. (2000) Structure, function and regulation of the plant vacuolar H+-translocating ATPase. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1465(1-2), 17-36.
Raven, J.A. (1985) pH regulation in plants. Science Progress (1933-), 495-509
Register, T. & Wuthier, R. (1984) Effect of vanadate, a potent alkaline phosphatase inhibitor, on 45Ca and 32Pi uptake by matrix vesicle-enriched fractions from chicken epiphyseal cartilage. Journal of Biological Chemistry, 259(6), 3511-3518.
Reid, R.J. & Smith, F.A. (2002) The cytoplasmic pH stat. Handbook of Plant Growth-pH as the Master Variable, pp. 61-81. New York: Marcel Dekker, New York, USA
Rienmüller, F., Dreyer, I., Schönknecht, G., Schulz, A., Schumacher, K., Nagy, R. et al. (2012) Luminal and cytosolic pH feedback on proton pump activity and ATP affinity of V-type ATPase from Arabidopsis. Journal of Biological Chemistry, 287(12), 8986-8993.
Royle, S.J. (2006) The cellular functions of clathrin. Cellular and Molecular Life Sciences CMLS, 63(16), 1823-1832.
Samanta, K., Mirams, G.R. & Parekh, A.B. (2018) Sequential forward and reverse transport of the Na+ Ca2+ exchanger generates Ca2+ oscillations within mitochondria. Nature communications, 9(1), 1-10.
Scholl, S. (2018) pH in the trans-golgi network/early endosome of Arabidopsis thaliana: Suppliers and consumers. PhD thesis
Schroeder, J.I. & Thuleau, P. (1991) Ca2+ channels in higher plant cells. The Plant Cell, 3(6), 555.
Schulze, W.X., Schneider, T., Starck, S., Martinoia, E. & Trentmann, O. (2012) Cold acclimation induces changes in Arabidopsis tonoplast protein abundance and activity and alters phosphorylation of tonoplast monosaccharide transporters. The Plant Journal, 69(3), 529-541.
Schumaker, K.S. & Sze, H. (1986) Calcium transport into the vacuole of oat roots. Characterization of H+/Ca2+ exchange activity. Journal of Biological Chemistry, 261(26), 12172-12178.
Schuster, S., Ouhabi, R., Rigoulet, M. & Mazat, J.-P. (1998) Modelling the interrelation between the transmembrane potential and pH difference across membranes with electrogenic proton transport upon build-up of the proton-motive force. Bioelectrochemistry and bioenergetics, 45(2), 181-192.
Shen, J., Zeng, Y., Zhuang, X., Sun, L., Yao, X., Pimpl, P. et al. (2013) Organelle pH in the Arabidopsis endomembrane system. Molecular plant, 6(5), 1419-1437.
Singh, M., Krüger, F., Beckmann, H., Brumm, S., Vermeer, J., Munnik, T. et al. (2014) Protein delivery to vacuole requires sand protein-dependent rab GTPase conversion for MVB-vacuole fusion. Current Biology, 24(12), 1383-1389.
Staehelin, L.A. & Moore, I. (1995) The plant golgi apparatus: structure, functional organization and trafficking mechanisms. Annual review of plant biology, 46(1), 261-288.
Strazzer, P., Spelt, C.E., Li, S., Bliek, M., Federici, C.T., Roose, M.L. et al. (2019) Hyperacidification of citrus fruits by a vacuolar proton-pumping P-ATPase complex. Nature communications, 10(1), 1-11.
Su, Y.-H., Frommer, W.B. & Ludewig, U. (2004) Molecular and functional characterization of a family of amino acid transporters from Arabidopsis. Plant physiology, 136(2), 3104-3113.
Sze, H., Ward, J.M. & Lai, S. (1992) Vacuolar H+-translocating ATPases from plants: structure, function, and isoforms. Journal of bioenergetics and biomembranes, 24(4), 371-381.
Taiz, L. (1992) The plant vacuole. Journal of Experimental Biology, 172(1), 113-122.
Tiessen, A., Perez-Rodriguez, P. & Delaye-Arredondo, L.J. (2012) Mathematical modeling and comparison of protein size distribution in different plant, animal, fungal and microbial species reveals a negative correlation between protein size and protein number, thus providing insight into the evolution of proteomes. BMC research notes, 5(1), 85.
Wang, Y., Dindas, J., Rienmüller, F., Krebs, M., Waadt, R., Schumacher, K. et al. (2015) Cytosolic Ca2+ signals enhance the vacuolar ion conductivity of bulging Arabidopsis root hair cells. Molecular plant, 8(11), 1665-1674.
Wu, X., Zhao, X., Baylor, L., Kaushal, S., Eisenberg, E. & Greene, L.E. (2001) Clathrin exchange during clathrin-mediated endocytosis. Journal of Cell Biology, 155(2), 291-300.
Yang, X., Liao, C.-Y., Tang, J. & Bassham, D.C. (2019) Overexpression of trans-Golgi network t-snares rescues vacuolar trafficking and TGN morphology defects in a putative tethering factor mutant. The Plant Journal, 99, 703-716.