Neuronal cell-based high-throughput screen for enhancers of mitochondrial function reveals luteolin as a modulator of mitochondria-endoplasmic reticulum coupling.


Journal

BMC biology
ISSN: 1741-7007
Titre abrégé: BMC Biol
Pays: England
ID NLM: 101190720

Informations de publication

Date de publication:
24 03 2021
Historique:
received: 17 04 2020
accepted: 11 02 2021
entrez: 25 3 2021
pubmed: 26 3 2021
medline: 25 9 2021
Statut: epublish

Résumé

Mitochondrial dysfunction is a common feature of aging, neurodegeneration, and metabolic diseases. Hence, mitotherapeutics may be valuable disease modifiers for a large number of conditions. In this study, we have set up a large-scale screening platform for mitochondrial-based modulators with promising therapeutic potential. Using differentiated human neuroblastoma cells, we screened 1200 FDA-approved compounds and identified 61 molecules that significantly increased cellular ATP without any cytotoxic effect. Following dose response curve-dependent selection, we identified the flavonoid luteolin as a primary hit. Further validation in neuronal models indicated that luteolin increased mitochondrial respiration in primary neurons, despite not affecting mitochondrial mass, structure, or mitochondria-derived reactive oxygen species. However, we found that luteolin increased contacts between mitochondria and endoplasmic reticulum (ER), contributing to increased mitochondrial calcium (Ca We provide a new screening platform for drug discovery validated in vitro and ex vivo. In addition, we describe a novel mechanism through which luteolin modulates mitochondrial activity in neuronal models with potential therapeutic validity for treatment of a variety of human diseases.

Sections du résumé

BACKGROUND
Mitochondrial dysfunction is a common feature of aging, neurodegeneration, and metabolic diseases. Hence, mitotherapeutics may be valuable disease modifiers for a large number of conditions. In this study, we have set up a large-scale screening platform for mitochondrial-based modulators with promising therapeutic potential.
RESULTS
Using differentiated human neuroblastoma cells, we screened 1200 FDA-approved compounds and identified 61 molecules that significantly increased cellular ATP without any cytotoxic effect. Following dose response curve-dependent selection, we identified the flavonoid luteolin as a primary hit. Further validation in neuronal models indicated that luteolin increased mitochondrial respiration in primary neurons, despite not affecting mitochondrial mass, structure, or mitochondria-derived reactive oxygen species. However, we found that luteolin increased contacts between mitochondria and endoplasmic reticulum (ER), contributing to increased mitochondrial calcium (Ca
CONCLUSION
We provide a new screening platform for drug discovery validated in vitro and ex vivo. In addition, we describe a novel mechanism through which luteolin modulates mitochondrial activity in neuronal models with potential therapeutic validity for treatment of a variety of human diseases.

Identifiants

pubmed: 33761951
doi: 10.1186/s12915-021-00979-5
pii: 10.1186/s12915-021-00979-5
pmc: PMC7989211
doi:

Substances chimiques

Luteolin KUX1ZNC9J2

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

57

Subventions

Organisme : Joint Programme in Neurodegenerative Disorders
ID : JPND_CD_FP-688-025

Références

Exp Mol Med. 2019 Apr 15;51(4):1-14
pubmed: 30988303
Free Radic Biol Med. 2014 May;70:204-13
pubmed: 24582549
Transl Psychiatry. 2015 Sep 29;5:e647
pubmed: 26418275
Nature. 1993 Jul 29;364(6436):387-8
pubmed: 8332206
Neurobiol Dis. 2020 Mar;136:104741
pubmed: 31931142
J Agric Food Chem. 2010 Apr 14;58(7):4477-86
pubmed: 20302373
Pharmacol Res. 2018 Dec;138:43-56
pubmed: 30219582
Neuron. 1997 Sep;19(3):723-33
pubmed: 9331361
Int J Obes (Lond). 2016 Dec;40(12):1841-1849
pubmed: 27377953
Brain. 2015 Apr;138(Pt 4):875-90
pubmed: 25678561
Pharmazie. 2013 Mar;68(3):195-200
pubmed: 23556338
Nat Commun. 2019 Aug 19;10(1):3726
pubmed: 31427578
Sci Transl Med. 2016 Feb 17;8(326):326rv3
pubmed: 26888432
Clin Ther. 2013 May;35(5):592-602
pubmed: 23688534
Nat Commun. 2014;5:3077
pubmed: 24435062
Mitochondrion. 2020 Jan;50:51-57
pubmed: 31669619
Free Radic Biol Med. 2016 Aug;97:427-440
pubmed: 27394174
Cell Rep. 2020 Feb 18;30(7):2332-2348.e10
pubmed: 32075767
Sci Rep. 2018 Jun 20;8(1):9408
pubmed: 29925868
Trends Mol Med. 2020 Jan;26(1):40-57
pubmed: 31727544
Cell Death Differ. 2018 Mar;25(3):542-572
pubmed: 29229998
Free Radic Biol Med. 2014 Jun;71:186-195
pubmed: 24642087
JCI Insight. 2017 Dec 7;2(23):
pubmed: 29212949
Free Radic Biol Med. 2010 Sep 1;49(5):800-13
pubmed: 20542495
J Mol Neurosci. 2018 Aug;65(4):491-506
pubmed: 30083786
Int J Mol Sci. 2014 Jan 09;15(1):895-904
pubmed: 24413756
Mol Cell. 2010 Jul 9;39(1):121-32
pubmed: 20603080
Nat Cell Biol. 2018 Jul;20(7):735
pubmed: 29950569
Curr Biol. 2018 Feb 5;28(3):369-382.e6
pubmed: 29395920
Med Res Rev. 2019 Sep;39(5):1851-1891
pubmed: 30741437
Phytomedicine. 2005 Jan;12(1-2):28-38
pubmed: 15693705
Hum Mol Genet. 2003 Jul 1;12(13):1555-67
pubmed: 12812983
Proc Natl Acad Sci U S A. 2013 May 7;110(19):7916-21
pubmed: 23620518
Biochim Biophys Acta. 2009 Nov;1787(11):1309-16
pubmed: 19413950
Front Pharmacol. 2016 Mar 08;7:47
pubmed: 27014061
Sci Rep. 2014 Jun 13;4:5285
pubmed: 24923838
Science. 2006 Mar 10;311(5766):1471-4
pubmed: 16469881
Exp Ther Med. 2018 Feb;15(2):1433-1441
pubmed: 29399124
Cell Calcium. 2017 Mar;62:1-15
pubmed: 28108029
Biochem Biophys Res Commun. 2018 May 27;500(1):59-64
pubmed: 28634072
Nat Neurosci. 2002 Aug;5(8):731-6
pubmed: 12089530
Nat Biotechnol. 2008 Mar;26(3):343-51
pubmed: 18297058
Nat Protoc. 2013 Jun;8(6):1249-59
pubmed: 23722262
N Engl J Med. 2012 Mar 22;366(12):1132-41
pubmed: 22435372
Proc Natl Acad Sci U S A. 2004 Mar 9;101(10):3381-6
pubmed: 14985508
Free Radic Biol Med. 1999 Sep;27(5-6):580-7
pubmed: 10490278
Cell Rep. 2016 Jun 7;15(10):2226-2238
pubmed: 27239030
J Neural Transm Suppl. 2007;(72):57-67
pubmed: 17982879
Methods Mol Biol. 2009;565:1-32
pubmed: 19551355
iScience. 2019 Jun 28;16:340-355
pubmed: 31203189
J Neurochem. 2000 Sep;75(3):991-1003
pubmed: 10936180
J Cell Biol. 2006 Dec 18;175(6):901-11
pubmed: 17178908
Cell Death Dis. 2019 Mar 1;10(3):210
pubmed: 30824685
Cell Metab. 2019 Feb 5;29(2):335-347.e5
pubmed: 30318339
Aging Cell. 2012 Oct;11(5):885-93
pubmed: 22805202
PLoS One. 2011;6(7):e21746
pubmed: 21799747
Sci Rep. 2017 Jan 23;7:41017
pubmed: 28112209
Trends Biochem Sci. 2016 Mar;41(3):261-273
pubmed: 26857402
Cell. 2007 Nov 2;131(3):596-610
pubmed: 17981125
J Biomol Screen. 2016 Jun;21(5):496-509
pubmed: 26738520
Free Radic Biol Med. 2011 Dec 1;51(11):2007-17
pubmed: 21945098
Toxicology. 2017 Nov 1;391:34-41
pubmed: 28789971
Neurotox Res. 2019 Apr;35(3):542-562
pubmed: 30610666
Cell Death Differ. 2018 Jun;25(6):1131-1145
pubmed: 29229997
Diabetes. 2018 Apr;67(4):636-650
pubmed: 29326365
Methods Mol Biol. 2018;1780:415-442
pubmed: 29856029
iScience. 2020 Mar 27;23(3):100931
pubmed: 32146326
Biochem J. 1980 Nov 15;192(2):741-51
pubmed: 7236236
Mol Cell Biol. 2016 Jun 29;36(14):1931-42
pubmed: 27161318
Biochim Biophys Acta. 2016 Oct;1863(10):2413-21
pubmed: 27033520
Acta Neuropathol. 2017 Jul;134(1):129-149
pubmed: 28337542
Mol Cell Biol. 2013 Aug;33(15):2996-3010
pubmed: 23716596
Neurochem Int. 2015 Dec;91:1-12
pubmed: 26476055

Auteurs

Luana Naia (L)

Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.

Catarina M Pinho (CM)

Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.

Giacomo Dentoni (G)

Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.

Jianping Liu (J)

Department of Medicine-Huddinge, Karolinska Institutet, Stockholm, Sweden.

Nuno Santos Leal (NS)

Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.

Duarte M S Ferreira (DMS)

Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.

Bernadette Schreiner (B)

Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.

Riccardo Filadi (R)

Department of Biomedical Sciences, University of Padua, Padua, Italy.
Neuroscience Institute, National Research Council (CNR), 35131, Padua, Italy.

Lígia Fão (L)

CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.

Niamh M C Connolly (NMC)

Royal College of Surgeons in Ireland, Department of Physiology & Medical Physics Department, Dublin, Ireland.

Pontus Forsell (P)

AlzeCure Pharma AB, Huddinge, Sweden.

Gunnar Nordvall (G)

AlzeCure Pharma AB, Huddinge, Sweden.

Makoto Shimozawa (M)

Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.

Elisa Greotti (E)

Department of Biomedical Sciences, University of Padua, Padua, Italy.
Neuroscience Institute, National Research Council (CNR), 35131, Padua, Italy.

Emy Basso (E)

Department of Biomedical Sciences, University of Padua, Padua, Italy.
Neuroscience Institute, National Research Council (CNR), 35131, Padua, Italy.

Pierre Theurey (P)

Department of Biomedical Sciences, University of Padua, Padua, Italy.

Anna Gioran (A)

German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.

Alvin Joselin (A)

Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada.

Marie Arsenian-Henriksson (M)

Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.

Per Nilsson (P)

Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.

A Cristina Rego (AC)

CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
Faculty of Medicine, Institute of Biochemistry, University of Coimbra, Coimbra, Portugal.

Jorge L Ruas (JL)

Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.

David Park (D)

Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada.

Daniele Bano (D)

German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.

Paola Pizzo (P)

Department of Biomedical Sciences, University of Padua, Padua, Italy.
Neuroscience Institute, National Research Council (CNR), 35131, Padua, Italy.

Jochen H M Prehn (JHM)

Royal College of Surgeons in Ireland, Department of Physiology & Medical Physics Department, Dublin, Ireland.

Maria Ankarcrona (M)

Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden. maria.ankarcrona@ki.se.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH