In vitro susceptibility of Trypanosoma cruzi discrete typing units (DTUs) to benznidazole: A systematic review and meta-analysis.


Journal

PLoS neglected tropical diseases
ISSN: 1935-2735
Titre abrégé: PLoS Negl Trop Dis
Pays: United States
ID NLM: 101291488

Informations de publication

Date de publication:
03 2021
Historique:
received: 26 06 2020
accepted: 24 02 2021
revised: 01 04 2021
pubmed: 23 3 2021
medline: 6 7 2021
entrez: 22 3 2021
Statut: epublish

Résumé

Chagas disease, a neglected tropical disease endemic to Latin America caused by the parasite Trypanosoma cruzi, currently affects 6-7 million people and is responsible for 12,500 deaths each year. No vaccine exists at present and the only two drugs currently approved for the treatment (benznidazole and nifurtimox), possess serious limitations, including long treatment regimes, undesirable side effects, and frequent clinical failures. A link between parasite genetic variability and drug sensibility/efficacy has been suggested, but remains unclear. Therefore, we investigated associations between T. cruzi genetic variability and in vitro benznidazole susceptibility via a systematic article review and meta-analysis. In vitro normalized benznidazole susceptibility indices (LC50 and IC50) for epimastigote, trypomastigote and amastigote stages of different T. cruzi strains were recorded from articles in the scientific literature. A total of 60 articles, which include 189 assays, met the selection criteria for the meta-analysis. Mean values for each discrete typing unit (DTU) were estimated using the meta and metaphor packages through R software, and presented in a rainforest plot. Subsequently, a meta-regression analysis was performed to determine differences between estimated mean values by DTU/parasite stage/drug incubation times. For each parasite stage, some DTU mean values were significantly different, e.g. at 24h of drug incubation, a lower sensitivity to benznidazole of TcI vs. TcII trypomastigotes was noteworthy. Nevertheless, funnel plots detected high heterogeneity of the data within each DTU and even for a single strain. Several limitations of the study prevent assigning DTUs to different in vitro benznidazole sensitivity groups; however, ignoring the parasite's genetic variability during drug development and evaluation would not be advisable. Our findings highlight the need for establishment of uniform experimental conditions as well as a screening of different DTUs during the optimization of new drug candidates for Chagas disease treatment.

Sections du résumé

BACKGROUND
Chagas disease, a neglected tropical disease endemic to Latin America caused by the parasite Trypanosoma cruzi, currently affects 6-7 million people and is responsible for 12,500 deaths each year. No vaccine exists at present and the only two drugs currently approved for the treatment (benznidazole and nifurtimox), possess serious limitations, including long treatment regimes, undesirable side effects, and frequent clinical failures. A link between parasite genetic variability and drug sensibility/efficacy has been suggested, but remains unclear. Therefore, we investigated associations between T. cruzi genetic variability and in vitro benznidazole susceptibility via a systematic article review and meta-analysis.
METHODOLOGY/PRINCIPAL FINDINGS
In vitro normalized benznidazole susceptibility indices (LC50 and IC50) for epimastigote, trypomastigote and amastigote stages of different T. cruzi strains were recorded from articles in the scientific literature. A total of 60 articles, which include 189 assays, met the selection criteria for the meta-analysis. Mean values for each discrete typing unit (DTU) were estimated using the meta and metaphor packages through R software, and presented in a rainforest plot. Subsequently, a meta-regression analysis was performed to determine differences between estimated mean values by DTU/parasite stage/drug incubation times. For each parasite stage, some DTU mean values were significantly different, e.g. at 24h of drug incubation, a lower sensitivity to benznidazole of TcI vs. TcII trypomastigotes was noteworthy. Nevertheless, funnel plots detected high heterogeneity of the data within each DTU and even for a single strain.
CONCLUSIONS/SIGNIFICANCE
Several limitations of the study prevent assigning DTUs to different in vitro benznidazole sensitivity groups; however, ignoring the parasite's genetic variability during drug development and evaluation would not be advisable. Our findings highlight the need for establishment of uniform experimental conditions as well as a screening of different DTUs during the optimization of new drug candidates for Chagas disease treatment.

Identifiants

pubmed: 33750958
doi: 10.1371/journal.pntd.0009269
pii: PNTD-D-20-01101
pmc: PMC8016252
doi:

Substances chimiques

Nitroimidazoles 0
Trypanocidal Agents 0
benzonidazole YC42NRJ1ZD

Types de publication

Journal Article Meta-Analysis Research Support, Non-U.S. Gov't Systematic Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

e0009269

Déclaration de conflit d'intérêts

I have read the journal’s policy and the authors of this manuscript have the following competing interests:Marco Coral-Almeida is deputy editor of PLOS NTDS.

Références

PLoS Negl Trop Dis. 2018 Jul 12;12(7):e0006612
pubmed: 30001347
PLoS Med. 2009 Jul 21;6(7):e1000097
pubmed: 19621072
PLoS Negl Trop Dis. 2016 Aug 29;10(8):e0004792
pubmed: 27571035
Zoonoses Public Health. 2014 Nov;61(7):477-9
pubmed: 25285940
Res Synth Methods. 2015 Mar;6(1):74-86
pubmed: 26035471
Rev Soc Bras Med Trop. 2017 May-Jun;50(3):296-300
pubmed: 28700045
Parasitology. 2014 Jan;141(1):140-6
pubmed: 23985066
Lancet. 2010 Apr 17;375(9723):1388-402
pubmed: 20399979
Evolution. 1988 Mar;42(2):277-292
pubmed: 28567853
Acta Trop. 2015 Nov;151:166-77
pubmed: 26200788
Rev Inst Med Trop Sao Paulo. 1962 Nov-Dec;4:389-96
pubmed: 14015230
Parasitology. 2000 May;120 ( Pt 5):513-26
pubmed: 10840981
Exp Parasitol. 2004 Sep-Oct;108(1-2):24-31
pubmed: 15491545
PLoS One. 2013 Nov 29;8(11):e82269
pubmed: 24312410
Lancet Infect Dis. 2013 Apr;13(4):342-8
pubmed: 23395248
Parasitol Int. 2010 Dec;59(4):565-70
pubmed: 20688189
Trans R Soc Trop Med Hyg. 1987;81(5):755-9
pubmed: 3130683
Control Clin Trials. 1986 Sep;7(3):177-88
pubmed: 3802833
Parasitol Int. 2014 Feb;63(1):260-8
pubmed: 23892180
Lancet. 2018 Jan 6;391(10115):82-94
pubmed: 28673423
Antimicrob Agents Chemother. 2016 Nov 21;60(12):7035-7042
pubmed: 27550362
N Engl J Med. 2011 Jun 30;364(26):2527-34
pubmed: 21714649
Am J Trop Med Hyg. 2017 Nov;97(5):1289-1303
pubmed: 29016289
Rev Soc Bras Med Trop. 2015 Jul-Aug;48(4):380-9
pubmed: 26312926
Parasitol Res. 2013 Jun;112(6):2341-51
pubmed: 23572046
Exp Parasitol. 1998 May;89(1):30-9
pubmed: 9603486
Pathogens. 2019 Oct 19;8(4):
pubmed: 31635071
N Engl J Med. 2015 Nov 5;373(19):1882
pubmed: 26535522
N Engl J Med. 2015 Jul 30;373(5):456-66
pubmed: 26222561
BMC Med Res Methodol. 2014 Dec 19;14:135
pubmed: 25524443
Mem Inst Oswaldo Cruz. 2002 Jan;97(1):3-24
pubmed: 11992141
Antimicrob Agents Chemother. 2014;58(2):635-9
pubmed: 24247135
Arq Bras Cardiol. 2011 Jun;96(6):434-42
pubmed: 21789345
Int J Parasitol. 2000 Jan;30(1):35-44
pubmed: 10675742
Comb Chem High Throughput Screen. 2019;22(8):509-520
pubmed: 31608837
Int J Parasitol Drugs Drug Resist. 2020 Apr;12:7-17
pubmed: 31862616
Expert Rev Anti Infect Ther. 2015 Aug;13(8):995-1029
pubmed: 26162928
Parasitology. 1997 Mar;114 ( Pt 3):213-8
pubmed: 9075341
Mem Inst Oswaldo Cruz. 2014 Sep;109(6):828-33
pubmed: 25317712
Acta Trop. 2016 Apr;156:1-16
pubmed: 26747009
Nat Commun. 2019 Sep 3;10(1):3972
pubmed: 31481692
BMC Genomics. 2018 Nov 13;19(1):816
pubmed: 30424726
J Cell Biochem. 2017 Jul;118(7):1936-1945
pubmed: 28276600
Mol Biochem Parasitol. 2014 Jan;193(1):17-9
pubmed: 24462750
Antimicrob Agents Chemother. 2010 Jul;54(7):2940-52
pubmed: 20457822
Infect Genet Evol. 2012 Mar;12(2):240-53
pubmed: 22226704
Acta Trop. 2010 Jul-Aug;115(1-2):55-68
pubmed: 19900395
J Eukaryot Microbiol. 1994 Jul-Aug;41(4):415-9
pubmed: 8087110
Ann Intern Med. 2006 May 16;144(10):724-34
pubmed: 16702588
Clin Microbiol Infect. 2018 Dec;24(12):1344.e1-1344.e4
pubmed: 29906591
J Infect Dis. 2012 Jul 15;206(2):220-8
pubmed: 22551809

Auteurs

Andrea Vela (A)

Institut de recherche pour le développement (IRD), UMR INTERTRYP IRD-CIRAD, University of Montpellier, Montpellier, France.
Centro de Investigación para la Salud en América Latina (CISeAL), Escuela de Ciencias Biológicas, Universidad Católica del Ecuador, Quito, Ecuador.

Marco Coral-Almeida (M)

One Health Research group, Facultad de Ciencias de la salud, Universidad de las Américas-Quito, Calle de los Colimes y Avenida De los Granados, Quito, Ecuador.

Denis Sereno (D)

Institut de recherche pour le développement (IRD), UMR INTERTRYP IRD-CIRAD, University of Montpellier, Montpellier, France.

Jaime A Costales (JA)

Centro de Investigación para la Salud en América Latina (CISeAL), Escuela de Ciencias Biológicas, Universidad Católica del Ecuador, Quito, Ecuador.

Christian Barnabé (C)

Institut de recherche pour le développement (IRD), UMR INTERTRYP IRD-CIRAD, University of Montpellier, Montpellier, France.

Simone Frédérique Brenière (SF)

Institut de recherche pour le développement (IRD), UMR INTERTRYP IRD-CIRAD, University of Montpellier, Montpellier, France.
Centro de Investigación para la Salud en América Latina (CISeAL), Escuela de Ciencias Biológicas, Universidad Católica del Ecuador, Quito, Ecuador.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH