Assessment of the effects of repeated freeze thawing and extended bench top processing of plasma samples using untargeted metabolomics.
Benchtop stability
Clinical diagnostic
Freeze–thaw
Metabolomics
Pre-analytical error
Validation
Journal
Metabolomics : Official journal of the Metabolomic Society
ISSN: 1573-3890
Titre abrégé: Metabolomics
Pays: United States
ID NLM: 101274889
Informations de publication
Date de publication:
11 03 2021
11 03 2021
Historique:
received:
06
10
2020
accepted:
26
02
2021
entrez:
11
3
2021
pubmed:
12
3
2021
medline:
21
10
2021
Statut:
epublish
Résumé
Clinical metabolomics has utility as a screen for inborn errors of metabolism (IEM) and variant classification in patients with rare disease. It is important to understand and characterize preanalytical factors that influence assay performance during patient sample testing. To evaluate the impact of extended thawing of human EDTA plasma samples on ice prior to extraction as well as repeated freeze-thaw cycling of samples to identify compounds that are unstable prior to metabolomic analysis. Twenty-four (24) donor EDTA plasma samples were collected and immediately frozen at - 80 °C. Twelve samples were thawed on ice and extracted for analysis at time 0, 2, 4, and 6 h. Twelve other donor samples were repeatedly thawed and frozen up to four times and analyzed at each cycle. Compound levels at each time point/freeze-thaw cycle were compared to the control samples using matched-paired t tests to identify analytes affected by each condition. We identified 1026 biochemicals across all samples. Incubation of thawed EDTA plasma samples on ice for up to 6 h resulted in < 1% of biochemicals changing significantly. Freeze-thaw cycles affected a greater percentage of the metabolome; ~ 2% of biochemicals changed after 3 freeze-thaw cycles. Our study highlights that the number and magnitude of these changes are not as widespread as other aspects of improper sample handling. In total, < 3% of the metabolome detected on our clinical metabolomics platform should be disqualified when multiple freeze-thaw cycles or extended thawing at 4 °C are performed on a given sample.
Identifiants
pubmed: 33704583
doi: 10.1007/s11306-021-01782-7
pii: 10.1007/s11306-021-01782-7
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
31Références
Alaimo, J. T., et al. (2020). Integrated analysis of metabolomic profiling and exome data supplements sequence variant interpretation, classification, and diagnosis. Genetics in Medicine. https://doi.org/10.1038/s41436-020-0827-0
doi: 10.1038/s41436-020-0827-0
pubmed: 32439973
pmcid: 7483344
Atwal, P. S., et al. (2015). Aromatic L-amino acid decarboxylase deficiency diagnosed by clinical metabolomic profiling of plasma. Molecular Genetics and Metabolism, 115, 91–94. https://doi.org/10.1016/j.ymgme.2015.04.008
doi: 10.1016/j.ymgme.2015.04.008
pubmed: 25956449
Bainbridge, M. N., et al. (2017). Analyses of SLC13A5-epilepsy patients reveal perturbations of TCA cycle. Molecular Genetics and Metabolism, 121, 314–319. https://doi.org/10.1016/j.ymgme.2017.06.009
doi: 10.1016/j.ymgme.2017.06.009
pubmed: 28673551
pmcid: 7539367
Bortolin, R. C., et al. (2017). Effects of freeze-thaw and storage on enzymatic activities, protein oxidative damage, and immunocontent of the blood, liver, and brain of rats. Biopreservation and Biobanking, 15, 182–190. https://doi.org/10.1089/bio.2016.0023
doi: 10.1089/bio.2016.0023
pubmed: 27662116
Breier, M., et al. (2014). Targeted metabolomics identifies reliable and stable metabolites in human serum and plasma samples. PLoS ONE, 9, e89728. https://doi.org/10.1371/journal.pone.0089728
doi: 10.1371/journal.pone.0089728
pubmed: 24586991
pmcid: 3933650
Bruns, D. E., & Knowler, W. C. (2009). Stabilization of glucose in blood samples: Why it matters. Clinical Chemistry, 55, 850–852. https://doi.org/10.1373/clinchem.2009.126037
doi: 10.1373/clinchem.2009.126037
pubmed: 19282352
pmcid: 2956743
Cappuccio, G., et al. (2017). Biochemical phenotyping unravels novel metabolic abnormalities and potential biomarkers associated with treatment of GLUT1 deficiency with ketogenic diet. PLoS ONE, 12, e0184022. https://doi.org/10.1371/journal.pone.0184022
doi: 10.1371/journal.pone.0184022
pubmed: 28961260
pmcid: 5621665
Castro, A. R., & Jost, H. A. (2013). Effect of multiple freeze and thaw cycles on the sensitivity of IgG and IgM immunoglobulins in the sera of patients with syphilis. Sexually Transmitted Diseases, 40, 870–871. https://doi.org/10.1097/OLQ.0000000000000036
doi: 10.1097/OLQ.0000000000000036
pubmed: 24113410
Corporation, O. (2015). omicsoftArraySuite, vol 7.2, OmicSoft Corporation.
Cuhadar, S., Koseoglu, M., Atay, A., & Dirican, A. (2013). The effect of storage time and freeze-thaw cycles on the stability of serum samples. Biochemical Medicine, 23, 70–77. https://doi.org/10.11613/bm.2013.009
doi: 10.11613/bm.2013.009
Davis, J. S., Darcy, C. J., Piera, K., McNeil, Y. R., Woodberry, T., & Anstey, N. M. (2009). Ex-vivo changes in amino acid concentrations from blood stored at room temperature or on ice: Implications for arginine and taurine measurements. BMC Clinical Pathology, 9, 10. https://doi.org/10.1186/1472-6890-9-10
doi: 10.1186/1472-6890-9-10
pubmed: 19941666
pmcid: 2785822
Dehaven, C. D., Evans, A. M., Dai, H., & Lawton, K. A. (2010). Organization of GC/MS and LC/MS metabolomics data into chemical libraries. Journal of Cheminformatics, 2, 9. https://doi.org/10.1186/1758-2946-2-9
doi: 10.1186/1758-2946-2-9
pubmed: 20955607
pmcid: 2984397
Donti, T. R., et al. (2016). Diagnosis of adenylosuccinate lyase deficiency by metabolomic profiling in plasma reveals a phenotypic spectrum. Molecular Genetics and Metabolism Reports, 8, 61–66. https://doi.org/10.1016/j.ymgmr.2016.07.007
doi: 10.1016/j.ymgmr.2016.07.007
pubmed: 27504266
pmcid: 4969260
Duley, J. A., et al. (2016). Elevated plasma dihydroorotate in Miller syndrome: Biochemical, diagnostic and clinical implications, and treatment with uridine. Molecular Genetics and Metabolism, 119, 83–90. https://doi.org/10.1016/j.ymgme.2016.06.008
doi: 10.1016/j.ymgme.2016.06.008
pubmed: 27370710
Evans, A. M., DeHaven, C. D., Barrett, T., Mitchell, M., & Milgram, E. (2009). Integrated, nontargeted ultrahigh performance liquid chromatography/electrospray ionization tandem mass spectrometry platform for the identification and relative quantification of the small-molecule complement of biological systems. Analytical Chemistry, 81, 6656–6667. https://doi.org/10.1021/ac901536h
doi: 10.1021/ac901536h
pubmed: 19624122
Evans, A. M., Bridgewater, B., Liu, Q., Mitchell, M. W., Robinson, R. J., Dai, H., Stewart, S. J., DeHaven, C. D., & Miller, L. A. D. (2014). High resolution mass spectrometry improves data quantity and quality as compared to unit mass resolution mass spectrometry in high-throughput profiling metabolomics. Metabolomics, 4, 132. https://doi.org/10.4172/2153-0769.1000132
doi: 10.4172/2153-0769.1000132
Ford, L., et al. (2020). Precision of a clinical metabolomics profiling platform for use in the identification of inborn errors of metabolism. The Journal of Applied Laboratory Medicine, 5, 342–356. https://doi.org/10.1093/jalm/jfz026
doi: 10.1093/jalm/jfz026
pubmed: 32445384
Giltay, E. J., Geleijnse, J. M., Schouten, E. G., Katan, M. B., & Kromhout, D. (2003). High stability of markers of cardiovascular risk in blood samples. Clinical Chemistry, 49, 652–655. https://doi.org/10.1373/49.4.652
doi: 10.1373/49.4.652
pubmed: 12651820
Glinton, K. E., et al. (2018). Disturbed phospholipid metabolism in serine biosynthesis defects revealed by metabolomic profiling. Molecular Genetics and Metabolism, 123, 309–316. https://doi.org/10.1016/j.ymgme.2017.12.009
doi: 10.1016/j.ymgme.2017.12.009
pubmed: 29269105
Glinton, K. E., Levy, H. L., Kennedy, A. D., Pappan, K. L., & Elsea, S. H. (2019). Untargeted metabolomics identifies unique though benign biochemical changes in patients with pathogenic variants in UROC1. Molecular Genetics and Metabolism Reports, 18, 14–18. https://doi.org/10.1016/j.ymgmr.2018.12.005
doi: 10.1016/j.ymgmr.2018.12.005
pubmed: 30619714
Hawkins, R. (2012). Managing the pre- and post-analytical phases of the total testing process. Annals of Laboratory Medicine, 32, 5–16. https://doi.org/10.3343/alm.2012.32.1.5
doi: 10.3343/alm.2012.32.1.5
pubmed: 22259773
Heinemann, L. (2010). Quality of glucose measurement with blood glucose meters at the point-of-care: Relevance of interfering factors. Diabetes Technology & Therapeutics, 12, 847–857. https://doi.org/10.1089/dia.2010.0076
doi: 10.1089/dia.2010.0076
Hillebrand, J. J., Heijboer, A. C., & Endert, E. (2017). Effects of repeated freeze-thaw cycles on endocrine parameters in plasma and serum. Annals of Clinical Biochemistry, 54, 289–292. https://doi.org/10.1177/0004563216657361
doi: 10.1177/0004563216657361
pubmed: 27303059
Jain, M., Kennedy, A. D., Elsea, S. H., & Miller, M. J. (2017). Analytes related to erythrocyte metabolism are reliable biomarkers for preanalytical error due to delayed plasma processing in metabolomics studies. Clinica Chimica Acta, 466, 105–111. https://doi.org/10.1016/j.cca.2017.01.005
doi: 10.1016/j.cca.2017.01.005
Jiang, Y., Almannai, M., Sutton, V. R., Sun, Q., & Elsea, S. H. (2017). Quantitation of phenylbutyrate metabolites by UPLC-MS/MS demonstrates inverse correlation of phenylacetate:phenylacetylglutamine ratio with plasma glutamine levels. Molecular Genetics and Metabolism, 122, 39–45. https://doi.org/10.1016/j.ymgme.2017.08.011
doi: 10.1016/j.ymgme.2017.08.011
pubmed: 28888854
Kennedy, A. D., et al. (2018). Metabolomics in the clinic: A review of the shared and unique features of untargeted metabolomics for clinical research and clinical testing. Journal of Mass Spectrometry, 53, 1143–1154. https://doi.org/10.1002/jms.4292
doi: 10.1002/jms.4292
pubmed: 30242936
Kennedy, A. D., et al. (2019). 2-Pyrrolidinone and succinimide as clinical screening biomarkers for GABA-transaminase deficiency: Anti-seizure medications impact accurate diagnosis. Frontiers in Neuroscience, 13, 394. https://doi.org/10.3389/fnins.2019.00394
doi: 10.3389/fnins.2019.00394
pubmed: 31133775
pmcid: 6517487
Key, T., et al. (1996). Stability of vitamins A, C, and E, carotenoids, lipids, and testosterone in whole blood stored at 4 degrees C for 6 and 24 hours before separation of serum and plasma. Cancer Epidemiology, Biomarkers & Prevention, 5, 811–814.
La Frano, M. R., et al. (2018). Impact of post-collection freezing delay on the reliability of serum metabolomics in samples reflecting the California mid-term pregnancy biobank. Metabolomics, 14, 151. https://doi.org/10.1007/s11306-018-1450-9
doi: 10.1007/s11306-018-1450-9
pubmed: 30830400
Loffler, M., Carrey, E. A., & Knecht, W. (2020). The pathway to pyrimidines: The essential focus on dihydroorotate dehydrogenase, the mitochondrial enzyme coupled to the respiratory chain. Nucleosides, Nucleotides & Nucleic Acids. https://doi.org/10.1080/15257770.2020.1723625
doi: 10.1080/15257770.2020.1723625
Miller, M. J., et al. (2016). Chronic oral L-carnitine supplementation drives marked plasma TMAO elevations in patients with organic acidemias despite dietary meat restrictions. JIMD Reports, 30, 39–44. https://doi.org/10.1007/8904_2016_539
doi: 10.1007/8904_2016_539
pubmed: 26936850
pmcid: 5110437
Ng, W. Y., Tiong, C. C., & Jacob, E. (2010). Maltose interference-free test strips for blood glucose testing at point-of-care: A laboratory performance evaluation. Diabetes Technology & Therapeutics, 12, 889–893. https://doi.org/10.1089/dia.2010.0095
doi: 10.1089/dia.2010.0095
Pappan, K. L., Kennedy, A. D., Magoulas, P. L., Hanchard, N. A., Sun, Q., & Elsea, S. H. (2017). Clinical metabolomics to segregate aromatic amino acid decarboxylase deficiency from drug-induced metabolite elevations. Pediatric Neurology, 75, 66–72. https://doi.org/10.1016/j.pediatrneurol.2017.06.014
doi: 10.1016/j.pediatrneurol.2017.06.014
pubmed: 28823629
R. C. Team. (2020). R: A language and environment for statistical computing. Austria: R C Team.
Rotter, M., et al. (2017). Stability of targeted metabolite profiles of urine samples under different storage conditions. Metabolomics, 13, 4. https://doi.org/10.1007/s11306-016-1137-z
doi: 10.1007/s11306-016-1137-z
pubmed: 27980503
Schleis, T. G. (2007). Interference of maltose, icodextrin, galactose, or xylose with some blood glucose monitoring systems. Pharmacotherapy, 27, 1313–1321. https://doi.org/10.1592/phco.27.9.1313
doi: 10.1592/phco.27.9.1313
pubmed: 17723085
Storey, J. D., & Tibshirani, R. (2003). Statistical significance for genomewide studies. Proceedings of the National Academy of Sciences of the United States of America, 100, 9440–9445. https://doi.org/10.1073/pnas.1530509100
doi: 10.1073/pnas.1530509100
pubmed: 12883005
pmcid: 170937
Sumner, L. W., et al. (2007). Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics, 3, 211–221. https://doi.org/10.1007/s11306-007-0082-2
doi: 10.1007/s11306-007-0082-2
pubmed: 24039616
pmcid: 3772505
Torell, F., Bennett, K., Rannar, S., Lundstedt-Enkel, K., Lundstedt, T., & Trygg, J. (2017). The effects of thawing on the plasma metabolome: Evaluating differences between thawed plasma and multi-organ samples. Metabolomics, 13, 66. https://doi.org/10.1007/s11306-017-1196-9
doi: 10.1007/s11306-017-1196-9
pubmed: 28473743
pmcid: 5392536
van Eijsden, M., van der Wal, M. F., Hornstra, G., & Bonsel, G. J. (2005). Can whole-blood samples be stored over 24 hours without compromising stability of C-reactive protein, retinol, ferritin, folic acid, and fatty acids in epidemiologic research? Clinical Chemistry, 51, 230–232. https://doi.org/10.1373/clinchem.2004.042234
doi: 10.1373/clinchem.2004.042234
pubmed: 15613719
Wangler, M. F., et al. (2018). A metabolomic map of Zellweger spectrum disorders reveals novel disease biomarkers. Genetics in Medicine, 20, 1274–1283. https://doi.org/10.1038/gim.2017.262
doi: 10.1038/gim.2017.262
pubmed: 29419819
pmcid: 7605708
Zhang, Y., et al. (2015). Effect of freeze/thaw cycles on several biomarkers in urine from patients with kidney disease. Biopreservation and Biobanking, 13, 144–146. https://doi.org/10.1089/bio.2014.0033
doi: 10.1089/bio.2014.0033
pubmed: 25880475
Zivkovic, A. M., Wiest, M. M., Nguyen, U. T., Davis, R., Watkins, S. M., & German, J. B. (2009). Effects of sample handling and storage on quantitative lipid analysis in human serum. Metabolomics, 5, 507–516. https://doi.org/10.1007/s11306-009-0174-2
doi: 10.1007/s11306-009-0174-2
pubmed: 20046864
pmcid: 2794342