Mitochondrial movement during its association with chloroplasts in Arabidopsis thaliana.


Journal

Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179

Informations de publication

Date de publication:
05 03 2021
Historique:
received: 11 02 2020
accepted: 11 02 2021
entrez: 6 3 2021
pubmed: 7 3 2021
medline: 11 8 2021
Statut: epublish

Résumé

Plant mitochondria move dynamically inside cells and this movement is classified into two types: directional movement, in which mitochondria travel long distances, and wiggling, in which mitochondria travel short distances. However, the underlying mechanisms and roles of both types of mitochondrial movement, especially wiggling, remain to be determined. Here, we used confocal laser-scanning microscopy to quantitatively characterize mitochondrial movement (rate and trajectory) in Arabidopsis thaliana mesophyll cells. Directional movement leading to long-distance migration occurred at high speed with a low angle-change rate, whereas wiggling leading to short-distance migration occurred at low speed with a high angle-change rate. The mean square displacement (MSD) analysis could separate these two movements. Directional movement was dependent on filamentous actin (F-actin), whereas mitochondrial wiggling was not, but slightly influenced by F-actin. In mesophyll cells, mitochondria could migrate by wiggling, and most of these mitochondria associated with chloroplasts. Thus, mitochondria migrate via F-actin-independent wiggling under the influence of F-actin during their association with chloroplasts in Arabidopsis.

Identifiants

pubmed: 33674706
doi: 10.1038/s42003-021-01833-8
pii: 10.1038/s42003-021-01833-8
pmc: PMC7935954
doi:

Substances chimiques

Actins 0
Luminescent Proteins 0
Recombinant Fusion Proteins 0
Chloroplast Proton-Translocating ATPases EC 3.6.3.-

Types de publication

Journal Article Research Support, Non-U.S. Gov't Video-Audio Media

Langues

eng

Sous-ensembles de citation

IM

Pagination

292

Références

Plant Cell Physiol. 2007 Feb;48(2):345-61
pubmed: 17204488
Biophys J. 1993 Nov;65(5):2021-40
pubmed: 8298032
Planta. 2010 Mar;231(4):779-91
pubmed: 20033230
Mol Ther. 2007 Jul;15(7):1297-305
pubmed: 17457321
Plant J. 2005 Dec;44(5):744-55
pubmed: 16297067
Nat Protoc. 2007;2(7):1565-72
pubmed: 17585298
Nat Commun. 2014 May 29;5:3936
pubmed: 24874098
Mol Plant. 2014 Jul;7(7):1094-104
pubmed: 24574521
Plant Cell Environ. 2013 Aug;36(8):1520-8
pubmed: 23421791
J Cell Sci. 2018 Jan 29;131(2):
pubmed: 28320821
Plant Cell Physiol. 2012 Apr;53(4):699-708
pubmed: 22383625
Annu Rev Biophys Biomol Struct. 1997;26:373-99
pubmed: 9241424
Science. 1969 Mar 21;163(3873):1353-5
pubmed: 17807816
Plant Cell Physiol. 2007 Apr;48(4):585-97
pubmed: 17327257
Cell Rep. 2018 Oct 9;25(2):501-512.e3
pubmed: 30304688
Curr Biol. 2016 Mar 7;26(5):627-39
pubmed: 26898467
Adv Sci (Weinh). 2019 Oct 23;6(23):1902064
pubmed: 31832328
Cell. 1980 Jun;20(2):329-41
pubmed: 6893016
Plant Cell Physiol. 2009 Jun;50(6):1041-8
pubmed: 19369273
Plant Physiol. 2016 Jul;171(3):1551-9
pubmed: 27021189
ACS Nano. 2018 Jun 26;12(6):5741-5752
pubmed: 29883099
Methods Enzymol. 2012;504:183-200
pubmed: 22264535
J Exp Biol. 2003 Jun;206(Pt 12):1963-9
pubmed: 12756277
J Exp Bot. 2000 May;51(346):865-71
pubmed: 10948212
Nat Methods. 2012 Jun 28;9(7):676-82
pubmed: 22743772
Plant Cell Physiol. 2011 Oct;52(10):1844-55
pubmed: 21893513
Mol Imaging. 2014;13:
pubmed: 25431095
Plant Sci. 2013 Sep;210:177-82
pubmed: 23849124
Ann Biomed Eng. 2012 Sep;40(9):1903-16
pubmed: 22527011
Trends Plant Sci. 2007 Mar;12(3):125-34
pubmed: 17293156
PLoS One. 2016 Jan 11;11(1):e0146717
pubmed: 26752045
Front Cell Dev Biol. 2015 Sep 25;3:56
pubmed: 26442263
J Exp Bot. 2002 Apr;53(369):659-67
pubmed: 11886885
Plant Cell Physiol. 2009 Jun;50(6):1032-40
pubmed: 19380350
Nat Methods. 2017 Jul;14(7):720-728
pubmed: 28581494
Nat Commun. 2015 Jan 05;6:5928
pubmed: 25557369
Nat Microbiol. 2016 Aug 01;1(10):16124
pubmed: 27670110
PLoS One. 2009 Jun 18;4(6):e5961
pubmed: 19536333
Curr Opin Cell Biol. 2015 Aug;35:21-9
pubmed: 25868077
Arabidopsis Book. 2010;8:e0130
pubmed: 22303256
Trends Plant Sci. 2003 Nov;8(11):546-53
pubmed: 14607100

Auteurs

Kazusato Oikawa (K)

Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan.

Takuto Imai (T)

Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Saitama, Japan.

Chonprakun Thagun (C)

Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Saitama, Japan.

Kiminori Toyooka (K)

Mass Spectrometry and Microscopy Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Japan.

Takeshi Yoshizumi (T)

Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Saitama, Japan.

Kazuya Ishikawa (K)

Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Japan.

Yutaka Kodama (Y)

Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Saitama, Japan. kodama@cc.utsunomiya-u.ac.jp.
Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Japan. kodama@cc.utsunomiya-u.ac.jp.

Keiji Numata (K)

Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan. keiji.numata@riken.jp.
Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Saitama, Japan. keiji.numata@riken.jp.

Articles similaires

Humans Meals Time Factors Female Adult

Vancomycin-associated DRESS demonstrates delay in AST abnormalities.

Ahmed Hussein, Kateri L Schoettinger, Jourdan Hydol-Smith et al.
1.00
Humans Drug Hypersensitivity Syndrome Vancomycin Female Male

Pathogenic mitochondrial DNA mutations inhibit melanoma metastasis.

Spencer D Shelton, Sara House, Luiza Martins Nascentes Melo et al.
1.00
DNA, Mitochondrial Humans Melanoma Mutation Neoplasm Metastasis
Humans Male Female Aged Middle Aged

Classifications MeSH