Expression of inflammatory interleukins and selected miRNAs in non-small cell lung cancer.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
03 03 2021
Historique:
received: 17 05 2020
accepted: 15 02 2021
entrez: 4 3 2021
pubmed: 5 3 2021
medline: 15 12 2021
Statut: epublish

Résumé

Tumours are characterised by an ability to avoid immune destruction and the presence of cancer-associated inflammation. Better understanding of the link between lung cancer and such inflammation is vital for early detection and personalized treatment. Thus, we examined the mRNA expression of interleukins IL-1β, IL-6, IL-17 and miR-9, miR-122 as potential useful biomarkers of NSCLC. Tumour tissues, non-cancerous tissue and blood samples were collected from 39 patients with primary NSCLC undergoing surgical treatment. The selected RNA was isolated from tissue samples and selected miRNAs from peripheral blood exosomes. This RNA was transcribed to cDNA and quantified using RT-qPCR. Significantly higher expression of the selected interleukins was observed in non-cancerous than tumour tissue, and IL-6 was significantly higher in the tumour tissue of patients with a history of ≤ 40 pack-years (PYs) (2.197, IQR: 0.821-4.415) than in those with > 40 PYs (0.461, IQR: 0.372-0.741; p = 0.037). It is clear that inflammatory processes play a role in NSCLC, as indicated by the upregulation of IL-1β and IL-6 in tumour and adjacent tissue, and that smoking has a strong influence on inflammation in tumourigenesis, demonstrated by the upregulation of IL-6 in tumour samples among patients with ≤ 40 PYs compared to > 40 PYs.

Identifiants

pubmed: 33658555
doi: 10.1038/s41598-021-84408-1
pii: 10.1038/s41598-021-84408-1
pmc: PMC7930048
doi:

Substances chimiques

Biomarkers, Tumor 0
IL17A protein, human 0
IL1B protein, human 0
IL6 protein, human 0
Interleukin-17 0
Interleukin-1beta 0
Interleukin-6 0
MIRN122 microRNA, human 0
MIRN92 microRNA, human 0
MicroRNAs 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

5092

Références

Brooks, D. et al. American Cancer Society. Cancer Facts & Figures 2-01. (2018).
Molina, J. R., Yang, P., Cassivi, S. D., Schild, S. E. & Adjei, A. A. Non-small cell lung cancer: Epidemiology, risk factors, treatment, and survivorship. Mayo Clin. Proc. 83, 584–594 (2008).
pubmed: 18452692 doi: 10.1016/S0025-6196(11)60735-0
Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2017. CA. Cancer J. Clin. 67, 7–30 (2017).
pubmed: 28055103 doi: 10.3322/caac.21387
Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: The next generation. Cell 144, 646–674 (2011).
pubmed: 21376230 doi: 10.1016/j.cell.2011.02.013
Macfarlane, L.-A. & Murphy, P. R. MicroRNA: Biogenesis, function and role in cancer. Curr. Genom. 11, 537–561 (2010).
doi: 10.2174/138920210793175895
Wahid, F., Shehzad, A., Khan, T. & Kim, Y. Y. MicroRNAs: Synthesis, mechanism, function, and recent clinical trials. Biochim. Biophys. Acta 1803, 1231–1243 (2010).
pubmed: 20619301 doi: 10.1016/j.bbamcr.2010.06.013
Berindan-neagoe, I. et al. MicroRNAome genome: A treasure for cancer diagnosis and therapy. CA 64, 311–336 (2015).
Borthwick, L. A. The IL-1 cytokine family and its role in inflammation and fibrosis in the lung. Semin. Immunopathol. 38, 517–534 (2016).
pubmed: 27001429 pmcid: 4896974 doi: 10.1007/s00281-016-0559-z
Hogquist, K. A., Nett, M. A., Unanue, E. R. & Chaplin, D. D. Interleukin 1 is processed and released during apoptosis. Proc. Natl. Acad. Sci. USA 88, 8485–8489 (1991).
pubmed: 1924307 doi: 10.1073/pnas.88.19.8485 pmcid: 52533
Dienz, O. et al. The induction of antibody production by IL-6 is indirectly mediated by IL-21 produced by CD4+ T cells. J. Exp. Med. 206, 69–78 (2009).
pubmed: 19139170 pmcid: 2626667 doi: 10.1084/jem.20081571
Beringer, A., Noack, M. & Miossec, P. IL-17 in Chronic inflammation: From discovery to targeting. Trends Mol. Med. 22, 230–241 (2016).
pubmed: 26837266 doi: 10.1016/j.molmed.2016.01.001
miRNA-Target Interaction Search Results. 95208 (2008).
Chakraborty, S., Zawieja, D. C., Davis, M. J. & Muthuchamy, M. MicroRNA signature of inflamed lymphatic endothelium and role of miR-9 in lymphangiogenesis and inflammation. Am. J. Physiol. Cell Physiol. 309, C680–C692 (2015).
pubmed: 26354749 pmcid: 4652079 doi: 10.1152/ajpcell.00122.2015
Zhang, Y. et al. MiR-9 upregulation leads to inhibition of erythropoiesis by repressing FoxO3. Sci. Rep. 8, 6519 (2018).
pubmed: 29695725 pmcid: 5916915 doi: 10.1038/s41598-018-24628-0
Selcuklu, S. D. et al. MicroRNA-9 inhibition of cell proliferation and identification of novel miR-9 targets by transcriptome profiling in breast cancer cells. J. Biol. Chem. 287, 29516–29528 (2012).
pubmed: 22761433 pmcid: 3436132 doi: 10.1074/jbc.M111.335943
Han, L., Wang, W., Ding, W. & Zhang, L. MiR-9 is involved in TGF-β1-induced lung cancer cell invasion and adhesion by targeting SOX7. J. Cell. Mol. Med. 21, 2000–2008 (2017).
pubmed: 28266181 pmcid: 5571535 doi: 10.1111/jcmm.13120
Liu, D. Z. et al. Elevating microRNA-122 in blood improves outcomes after temporary middle cerebral artery occlusion in rats. J. Cereb. Blood Flow Metab. 36, 1374–1383 (2016).
doi: 10.1177/0271678X15610786
Nakamura, M. et al. MicroRNA-122 inhibits the production of inflammatory cytokines by targeting the PKR activator PACT in human hepatic stellate cells. PLoS One 10, e0144295 (2015).
Qin, H. et al. miR-122 inhibits metastasis and epithelial-mesenchymal transition of non-small-cell lung cancer cells. Onco. Targets. Ther. 8, 3175–3184 (2015).
pubmed: 26604787 pmcid: 4631421
Nie, W. et al. miR-122 promotes proliferation and invasion of clear cell renal cell carcinoma by suppressing Forkhead box O3. Int. J. Oncol. 54, 559–571 (2019).
pubmed: 30483771
Fong, M. Y. et al. Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis. Nat. Cell Biol. 17, 183–194 (2015).
pubmed: 25621950 pmcid: 4380143 doi: 10.1038/ncb3094
Sendi, H. et al. miR-122 inhibition in a human liver organoid model leads to liver inflammation, necrosis, steatofibrosis and dysregulated insulin signaling. PLoS ONE 13, e0200847 (2018).
pubmed: 30024933 pmcid: 6053181 doi: 10.1371/journal.pone.0200847
Brzeziańska, E., Dutkowska, A. & Antczak, A. The significance of epigenetic alterations in lung carcinogenesis. Mol. Biol. Rep. 40, 309–325 (2013).
pubmed: 23086271 doi: 10.1007/s11033-012-2063-4
Yasmin, R. et al. Epigenetic regulation of inflammatory cytokines and associated genes in human malignancies. Mediators Inflamm. 2015, 1–8 (2015).
doi: 10.1155/2015/201703
Tekpli, X. et al. DNA methylation at promoter regions of interleukin 1B, interleukin 6, and interleukin 8 in non-small cell lung cancer. Cancer Immunol. Immunother. 62, 337–345 (2013).
pubmed: 22923190 doi: 10.1007/s00262-012-1340-3
Vikhreva, P. et al. TAp73 upregulates IL-1β in cancer cells: Potential biomarker in lung and breast cancer?. Biochem. Biophys. Res. Commun. 482, 498–505 (2017).
pubmed: 28212736 pmcid: 5243147 doi: 10.1016/j.bbrc.2016.10.085
Li, Y. et al. IL1B gene polymorphisms, age and the risk of non-small cell lung cancer in a Chinese population. Lung Cancer 89, 232–237 (2015).
pubmed: 26141218 doi: 10.1016/j.lungcan.2015.06.009
Wang, L. et al. IL-1β-Mediated repression of microRNA-101 is crucial for inflammation-promoted lung tumorigenesis. Cancer Res. 74, 4720–4730 (2014).
pubmed: 24958470 doi: 10.1158/0008-5472.CAN-14-0960
Grivennikov, S. I., Greten, F. R. & Karin, M. Immunity, inflammation, and cancer. Cell 140, 883–899 (2010).
pubmed: 20303878 pmcid: 2866629 doi: 10.1016/j.cell.2010.01.025
Kaplanov, I. et al. Blocking IL-1β reverses the immunosuppression in mouse breast cancer and synergizes with anti–PD-1 for tumor abrogation. Proc. Natl. Acad. Sci. USA 116, 1361–1369 (2019).
pubmed: 30545915 doi: 10.1073/pnas.1812266115
Apte, R. N. et al. The involvement of IL-1 in tumorigenesis, tumor invasiveness, metastasis and tumor-host interactions. Cancer Metastasis Rev. 25, 387–408 (2006).
pubmed: 17043764 doi: 10.1007/s10555-006-9004-4
Kong, H. et al. Differential expression of inflammasomes in lung cancer cell lines and tissues. Tumor Biol. 36, 7501–7513 (2015).
doi: 10.1007/s13277-015-3473-4
Scheller, J., Chalaris, A., Schmidt-Arras, D. & Rose-John, S. The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim. Biophys. Acta Mol. Cell Res. 1813, 878–888 (2011).
doi: 10.1016/j.bbamcr.2011.01.034
Mumm, J. B. & Oft, M. Cytokine-based transformation of immune surveillance into tumor-promoting inflammation. Oncogene 27, 5913–5919 (2008).
pubmed: 18836472 doi: 10.1038/onc.2008.275
Li, J. et al. Reciprocal activation between IL-6/STAT3 and NOX4/Akt signalings promotes proliferation and survival of non-small cell lung cancer cells. Oncotarget 6, 1031–1048 (2015).
pubmed: 25504436 pmcid: 4359215 doi: 10.18632/oncotarget.2671
Yuquan, B. et al. Interaction between epidermal growth factor receptor and interleukin-6 receptor in NSCLC progression. J. Cell. Biochem. 120, 872–881 (2019).
pubmed: 30132982 doi: 10.1002/jcb.27448
Silva, E. M. et al. High systemic IL-6 is associated with worse prognosis in patients with non-small cell lung cancer. PLoS ONE 12, e0181125 (2017).
pubmed: 28715437 pmcid: 5513446 doi: 10.1371/journal.pone.0181125
Huang, Q. et al. 17β-estradiol upregulates IL6 expression through the ERβ pathway to promote lung adenocarcinoma progression. J. Exp. Clin. Cancer Res. 37, 133 (2018).
pubmed: 29970138 pmcid: 6029357 doi: 10.1186/s13046-018-0804-5
Shintani, Y. et al. IL-6 secreted from cancer-associated fibroblasts mediates chemoresistance in NSCLC by increasing epithelial-mesenchymal transition signaling. J. Thorac. Oncol. 11, 1482–1492 (2016).
pubmed: 27287412 doi: 10.1016/j.jtho.2016.05.025
Balabko, L. et al. Increased expression of the Th17-IL-6R/pSTAT3/BATF/RorγT-axis in the tumoural region of adenocarcinoma as compared to squamous cell carcinoma of the lung. Sci. Rep. 4, 7396 (2014).
pubmed: 25491772 pmcid: 4261178 doi: 10.1038/srep07396
Wu, F. et al. The role of interleukin-17 in lung cancer. Mediators Inflamm. 2016, 1–6 (2016).
doi: 10.1155/2016/8696481
Chen, X. et al. Increased IL-17-producing cells correlate with poor survival and lymphangiogenesis in NSCLC patients. Lung Cancer 69, 348–354 (2010).
pubmed: 20022135 doi: 10.1016/j.lungcan.2009.11.013
Pan, B. et al. Interleukin-17 levels correlate with poor prognosis and vascular endothelial growth factor concentration in the serum of patients with non-small cell lung cancer. Biomarkers 20, 232–239 (2015).
pubmed: 26301881 doi: 10.3109/1354750X.2015.1068853
Zhang, G.-Q., Han, F., Fang, X.-Z. & Ma, X.-M. CD4 +, IL17 and Foxp3 expression in different pTNM stages of operable non-small cell lung cancer and effects on disease prognosis. Asian Pac. J. Cancer Prev. 13, 3955–3960 (2012).
pubmed: 23098499 doi: 10.7314/APJCP.2012.13.8.3955
Czarnecka, K. H. et al. A strong decrease in TIMP3 expression mediated by the presence of miR-17 and 20a enables extracellular matrix remodeling in the NSCLC lesion surroundings. Front. Oncol. 9, 1372 (2019).
pubmed: 31921636 pmcid: 6923190 doi: 10.3389/fonc.2019.01372
Xu, G. et al. MicroRNA-9 regulates non-small cell lung cancer cell invasion and migration by targeting eukaryotic translation initiation factor 5A2. Am. J. Transl. Res. 9, 478–488 (2017).
pubmed: 28337276 pmcid: 5340683
Yang, Y. et al. Application of serum microRNA-9-5p, 21–5p, and 223–3p combined with tumor markers in the diagnosis of non-small-cell lung cancer in Yunnan in southwestern China. Onco Targets. Ther. 11, 587–597 (2018).
pubmed: 29430184 pmcid: 5796463 doi: 10.2147/OTT.S152957
Li, G., Wu, F., Yang, H., Deng, X. & Yuan, Y. MiR-9-5p promotes cell growth and metastasis in non-small cell lung cancer through the repression of TGFBR2. Biomed. Pharmacother. 96, 1170–1178 (2017).
pubmed: 29239816 doi: 10.1016/j.biopha.2017.11.105
Li, C. et al. Characterization and selective incorporation of small non-coding RNAs in non-small cell lung cancer extracellular vesicles. Cell Biosci. 8, 2 (2018).
pubmed: 29344346 pmcid: 5763536 doi: 10.1186/s13578-018-0202-x
Ma, D. et al. MiR-122 induces radiosensitization in non-small cell lung cancer cell line. Int. J. Mol. Sci. 16, 22137–22150 (2015).
pubmed: 26389880 pmcid: 4613300 doi: 10.3390/ijms160922137
Zhang, H. et al. Circulating microRNAs in relation to EGFR status and survival of lung adenocarcinoma in female non-smokers. PLoS ONE 8, e81408 (2013).
pubmed: 24282590 pmcid: 3839880 doi: 10.1371/journal.pone.0081408
Ito, S. et al. Unique circulating microRNAs in relation to EGFR mutation status in Japanese smoker male with lung adenocarcinoma. Oncotarget 8, 114685–114697 (2017).
pubmed: 29383112 pmcid: 5777724 doi: 10.18632/oncotarget.21425
Lan, Q. et al. Genome-wide association analysis identifies new lung cancer susceptibility loci in never-smoking women in Asia. Nat. Genet. 44, 1330–1335 (2012).
pubmed: 23143601 pmcid: 4169232 doi: 10.1038/ng.2456
Gramantieri, L. et al. Cyclin G1 is a target of miR-122a, a MicroRNA frequently down-regulated in human hepatocellular carcinoma. Cancer Res. 67, 6092–6099 (2007).
pubmed: 17616664 doi: 10.1158/0008-5472.CAN-06-4607
Bai, S. et al. MicroRNA-122 inhibits tumorigenic properties of hepatocellular carcinoma cells and sensitizes these cells to sorafenib. J. Biol. Chem. 284, 32015–32027 (2009).
pubmed: 19726678 pmcid: 2797273 doi: 10.1074/jbc.M109.016774
Tsai, W. C. et al. MicroRNA-122, a tumor suppressor MicroRNA that regulates intrahepatic metastasis of hepatocellular carcinoma. Hepatology 49, 1571–1582 (2009).
pubmed: 19296470 doi: 10.1002/hep.22806
Zeng, C. et al. A novel GSK-3 beta-C/EBP alpha-miR-122-insulin-like growth factor 1 receptor regulatory circuitry in human hepatocellular carcinoma. Hepatology 52, 1702–1712 (2010).
pubmed: 21038412 doi: 10.1002/hep.23875
Chou, C. H. et al. MiRTarBase update 2018: A resource for experimentally validated microRNA-target interactions. Nucleic Acids Res. 46, D296–D302 (2018).
pubmed: 29126174 doi: 10.1093/nar/gkx1067
Makki, M. S., Haseeb, A. & Haqqi, T. M. MicroRNA-9 promotes IL-6 expression by inhibiting MCPIP1 expression in IL-1β-stimulated human chondrocytes HHS Public Access. Arthr. Rheumatol 67, 2117–2128 (2015).
doi: 10.1002/art.39173
Sochal, M. et al. Determinants of sleep quality in inflammatory bowel diseases. J. Clin. Med. 9, 2921 (2020).
pmcid: 7563861 doi: 10.3390/jcm9092921

Auteurs

Agata Dutkowska (A)

Department of General and Oncological Pulmonology, Medical University of Lodz, Lodz, Poland. agata.dutkowska@umed.lodz.pl.

Bartosz Szmyd (B)

Department of Biomedicine and Genetics, Medical University of Lodz, Lodz, Poland.

Marcin Kaszkowiak (M)

Department of Biomedicine and Genetics, Medical University of Lodz, Lodz, Poland.

Daria Domańska-Senderowska (D)

Department of Biomedicine and Genetics, Medical University of Lodz, Lodz, Poland.

Dorota Pastuszak-Lewandoska (D)

Department of Microbiology and Laboratory Medical Immunology, Lodz, Poland.

Ewa Brzeziańska-Lasota (E)

Department of Biomedicine and Genetics, Medical University of Lodz, Lodz, Poland.

Jacek Kordiak (J)

Department of Chest Surgery, General and Oncological Surgery, University Teaching Hospital No. 2, Medical University of Lodz, Lodz, Poland.

Adam Antczak (A)

Department of General and Oncological Pulmonology, Medical University of Lodz, Lodz, Poland.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH