Neural markers of procrastination in white matter microstructures and networks.
diffusion tensor imaging
machine learning
neural markers
procrastinators
white matter microstructure
Journal
Psychophysiology
ISSN: 1540-5958
Titre abrégé: Psychophysiology
Pays: United States
ID NLM: 0142657
Informations de publication
Date de publication:
05 2021
05 2021
Historique:
revised:
13
01
2021
received:
22
07
2020
accepted:
13
01
2021
pubmed:
16
2
2021
medline:
22
1
2022
entrez:
15
2
2021
Statut:
ppublish
Résumé
More than 15% of adults suffer from pathological procrastination, which leads to substantial harm to their mental and psychiatric health. Our previous work demonstrated the role of three neuroanatomical networks as neural substrates of procrastination, but their potential interaction remains unknown. Three large-scale independent samples (total n = 901) were recruited. In sample A, tract-based spatial statistics (TBSS) and connectome-based graph-theoretical analysis was conducted to probe association between topological properties of white matter (WM) network and procrastination. In sample B, the above analysis was reproduced to demonstrate replicability. In sample C, machine learning models were built to predict individual procrastination. TBSS results showed a negative association between procrastination and WM integrity of limbic-prefrontal connection, and a positive relationship between intra-connection within the limbic system and procrastination. Also, both the efficiency and integrity of limbic WM network were found to be linked to procrastination. The above findings were all confirmed to replicate in an independent sample; prediction models demonstrated that these WM features can predict procrastination accurately in sample C. In conclusion, this study moves forward our understanding of procrastination by clarifying the role of interplay of self-control and emotional regulation with it.
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e13782Informations de copyright
© 2021 Society for Psychophysiological Research.
Références
Ahmadlou, M., Ahmadi, K., Rezazade, M., & Azad-Marzabadi, E. (2013). Global organization of functional brain connectivity in methamphetamine abusers. Clinical Neurophysiology, 124(6), 1122-1131. https://doi.org/10.1016/j.clinph.2012.12.003
Ariely, D., & Wertenbroch, K. (2002). Procrastination, deadlines, and performance: Self-control by precommitment. Psychological Science, 13(3), 219-224. https://doi.org/10.1111/1467-9280.00441
Bullmore, E., & Sporns, O. (2009). Complex brain networks: Graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10(3), 186-198. https://doi.org/10.1038/nrn2575
Chen, Z., Liu, P., Zhang, C., & Feng, T. (2019). Brain morphological dynamics of procrastination: The crucial role of the self-control, emotional, and episodic prospection network. Cerebral Cortex, 30(5), 2683-2689. https://doi.org/10.1093/cercor/bhz278
Chikama, M., Mcfarland, N. R., Amaral, D. G., & Haber, S. N. (1997). Insular cortical projections to functional regions of the striatum correlate with cortical cytoarchitectonic organization in the primate. Journal of Neuroscience, 17(24), 9686-9705. https://doi.org/10.1523/JNEUROSCI.17-24-09686.1997
Cui, Z., Zhong, S., Xu, P., He, Y., & Gong, G. (2013). PANDA: A pipeline toolbox for analyzing brain diffusion images. Frontiers in Human Neuroscience, 7. https://doi.org/10.3389/fnhum.2013.00042
D'Alessandro, M., Gallitto, G., Greco, A., & Lombardi, L. (2020). A joint modelling approach to analyze risky decisions by means of diffusion tensor imaging and behavioural data. Brain Sciences, 10(3). https://doi.org/10.3390/brainsci10030138
Dalgleish, T. (2004). The emotional brain. Nature Reviews Neuroscience, 5(7), 583-589. https://doi.org/10.1038/nrn1432
Duru, E., & Balkis, M. (2017). Procrastination, self-esteem, academic performance, and well-being: A moderated mediation model. International Journal of Educational Psychology, 6(2), 97-119. https://doi.org/10.17583/ijep.2017.2584
Esteban, R. F. C., & Ramírez, A. (2014). Procrastination and demographic characteristics associated with college students. Tehran University Medical Journal, 72(2), 113-120.
Fan, L., Li, H., Zhuo, J., Zhang, Y. U., Wang, J., Chen, L., Yang, Z., Chu, C., Xie, S., Laird, A. R., Fox, P. T., Eickhoff, S. B., Yu, C., & Jiang, T. (2016). The human brainnetome atlas: A new brain atlas based on connectional architecture. Cerebral Cortex, 26(8), 3508-3526. https://doi.org/10.1093/cercor/bhw157
Ferrari, J. R. (1975). Procrastination and task avoidance: Theory, research, and treatment (The springer series in social/clinical psychology). Revue Canadienne Des Sciences De Ladministration, 13(2), 182-183.
Ferrari, J. R., Harriott, J. S., & Zimmerman, M. (1999). The social support networks of procrastinators: Friends or family in times of trouble? Personality and Individual Differences, 26(2), 321-331. https://doi.org/10.1016/S0191-8869(98)00141-X
Ferrari, J. R., Ozer, B. U., & Demir, A. (2009). Chronic procrastination among Turkish adults: Exploring decisional, avoidant, and arousal styles. Journal of Social Psychology, 149(3), 402-408. https://doi.org/10.1016/S0191-8869(98)00141-X
Fudge, J. L., Breitbart, M. A., Matthew, D., & Valerie, P. (2010). Insular and gustatory inputs to the caudal ventral striatum in primates. Journal of Comparative Neurology, 490(2), 101-118. https://doi.org/10.1002/cne.20660
Gierlichs, B., Batina, L., Tuyls, P., & Preneel, B. (2008). Mutual Information Analysis. Cryptographic Hardware and Embedded Systems-CHES 2008, Proceedings of 10th International Workshop. Washington, DC, August 10-13. Springer-Verlag.
Han, S. D., Arfanakis, K., Fleischman, D. A., Yu, L., Bennett, D. A., & Boyle, P. A. (2018). White matter correlates of temporal discounting in older adults. Brain Structure & Function, 223(8), 3653-3663. https://doi.org/10.1007/s00429-018-1712-3
Harding, I. H., Yucel, M., Harrison, B. J., Pantelis, C., & Breakspear, M. (2015). Effective connectivity within the frontoparietal control network differentiates cognitive control and working memory. NeuroImage, 106, 144-153. https://doi.org/10.1016/j.neuroimage.2014.11.039
Hare, T. A., Tottenham, N., Davidson, M. C., Glover, G. H., & Casey, B. J. (2005). Contributions of amygdala and striatal activity in emotion regulation. Biological Psychiatry, 57(6), 624-632. https://doi.org/10.1016/j.biopsych.2004.12.038
Hawkins, G. E., Mittner, M., Forstmann, B. U., & Heathcote, A. (2017). On the efficiency of neurally-informed cognitive models to identify latent cognitive states. Journal of Mathematical Psychology, 76(Pt.B), 142-155. https://doi.org/10.1016/j.jmp.2016.06.007
He, Y., & Evans, A. (2010). Graph theoretical modeling of brain connectivity. Current Opinion in Neurology, 23(4), 341-350. https://doi.org/10.1097/WCO.0b013e32833aa567
Hu, Y., Liu, P., Guo, Y., & Feng, T. (2018). The neural substrates of procrastination: A voxel-based morphometry study. Brain and Cognition, 121, 11-16. https://doi.org/10.1016/j.bandc.2018.01.001
Keating, D. P. (2012). Cognitive and brain development in adolescence. Enfance, 3, 267-279. https://doi.org/10.4074/S0013754512003035
Khalsa, S., Mayhew, S. D., Chechlacz, M., Bagary, M., & Bagshaw, A. P. (2014). The structural and functional connectivity of the posterior cingulate cortex: Comparison between deterministic and probabilistic tractography for the investigation of structure-function relationships. NeuroImage, 102(1-2), 118-127. https://doi.org/10.1016/j.neuroimage.2013.12.022
Koelsch, S., & Skouras, S. (2014). Functional centrality of amygdala, striatum and hypothalamus in a “small-world” network underlying joy: An fMRI study with music. Human Brain Mapping, 35(7), 3819-3827. https://doi.org/10.1002/hbm.22416
Kulynych, J. J., Vladar, K., Jones, D. W., & Weinberger, D. R. (1994). Gender differences in the normal lateralization of the supratemporal cortex: MRI surface-rendering morphometry of Heschl's gyrus and the planum temporale. Cerebral Cortex, 4(2), 107-118. https://doi.org/10.1093/cercor/4.2.107
Lang, P. J., & Davis, M. (2006). Chapter 1 emotion, motivation, and the brain: Reflex foundations in animal and human research. Progress in Brain Research, 156, 3-29.
Li, Z., Peck, K. K., Brennan, N. P., Jenabi, M., Hsu, M., Zhang, Z., Holodny, A. I., & Young, R. J. (2013). Diffusion tensor tractography of the arcuate fasciculus in patients with brain tumors: Comparison between deterministic and probabilistic models. Journal of Biomedical Science & Engineering, 6(2), 192. https://doi.org/10.4236/jbise.2013.62023
Lilja, Y., Ljungberg, M., Starck, G., Malmgren, K., Rydenhag, B. L., & Nilsson, D. T. (2014). Visualizing Meyer's loop: A comparison of deterministic and probabilistic tractography. Epilepsy Research, 108(3), 481-490. https://doi.org/10.1016/j.eplepsyres.2014.01.017
Lithari, C. A., Frantzidis, C., Papadelis, M. A., Klados, C. P., & Bamidis, P. D. (2010). Small-world properties of brain Functional Connectivity Networks are affected by emotional stimuli, Proceedings of the 10th IEEE International Conference on Information Technology and Applications in Biomedicine, Corfu, 2010, pp. 1-4. https://doi.org/10.1109/ITAB.2010.5687815
Liu, P., & Feng, T. (2017). The overlapping brain region accounting for the relationship between procrastination and impulsivity: A voxel-based morphometry study. Neuroscience, 360, 9-17. https://doi.org/10.1016/j.neuroscience.2017.07.042
Liu, P., & Feng, T. (2018). The effect of future time perspective on procrastination: The role of parahippocampal gyrus and ventromedial prefrontal cortex. Brain Imaging and Behavior, 13(3), 615-622. https://doi.org/10.1007/s11682-018-9874-4
Maxime, D., Rachid, D., Knösche, T. R., & Alfred, A. (2009). Deterministic and probabilistic tractography based on complex fibre orientation distributions. IEEE Transactions on Medical Imaging, 28(2), 269-286. https://doi.org/10.1109/TMI.2008.2004424
Mcclure, S. M., & Bickel, W. K. (2015). A dual-systems perspective on addiction: Contributions from neuroimaging and cognitive training. Annals of the New York Academy of Sciences, 1327(1), 62-78. https://doi.org/10.1111/nyas.12561
Mcdonald, A. J. (1991). Topographical organization of amygdaloid projections to the caudatoputamen, nucleus accumbens, and related striatal-like areas of the rat brain. Neuroscience, 44(1), 15-33. https://doi.org/10.1016/0306-4522(91)90248-M
Mcgeorge, A. J., & Faull, R. L. (1989). The organization of the projection from the cerebral cortex to the striatum in the rat. Neuroscience, 29(3), 503-537. https://doi.org/10.1016/0306-4522(89)90128-0
Menon, V., & Uddin, L. Q. (2010). Saliency, switching, attention and control: A network model of insula function. Brain Structure & Function, 214(5-6), 655-667. https://doi.org/10.1007/s00429-010-0262-0
Morrison, S. E., McGinty, V. B., du Hoffmann, J., & Nicola, S. M. (2017). Limbic-motor integration by neural excitations and inhibitions in the nucleus accumbens. Journal of Neurophysiology, 118(5), 2549-2567. https://doi.org/10.1152/jn.00465.2017
Nunez, M. D., Vandekerckhove, J., & Srinivasan, R. (2017). How attention influences perceptual decision making: Single-trial EEG correlates of drift-diffusion model parameters. Journal of Mathematical Psychology, 76(B), 117-130. https://doi.org/10.1016/j.jmp.2016.03.003
O'Donoghue, T., & Rabin, M. (1999). Incentives for procrastinators. The Quarterly Journal of Economics, 114(3), 769-816. https://doi.org/10.1162/003355399556142
Piray, P., Toni, I., & Cools, R. (2016). Human choice strategy varies with anatomical projections from ventromedial prefrontal cortex to medial striatum. Journal of Neuroscience, 36(10), 2857-2867. https://doi.org/10.1523/JNEUROSCI.2033-15.2016
Puetz, V. B., Parker, D., Kohn, N., Dahmen, B., Verma, R., & Konrad, K. (2017). Altered brain network integrity after childhood maltreatment: A structural connectomic DTI-study. Human Brain Mapping, 38(2), 855-868. https://doi.org/10.1002/hbm.23423
Rebetez, M. M. L., Rochat, L., Gay, P., & Linden, M. V. D. (2014). Validation of a French version of the Pure Procrastination Scale (PPS). Comprehensive Psychiatry, 55(6), 1442-1447. https://doi.org/10.1016/j.comppsych.2014.04.024
Reynolds, S. M., & Zahm, D. S. (2005). Specificity in the projections of prefrontal and insular cortex to ventral striatopallidum and the extended amygdala. Journal of Neuroscience, 25(50), 11757-11767. https://doi.org/10.1523/jneurosci.3432-05.2005
Rozental, A., Forsell, E., Svensson, A., Forsstrom, D., Andersson, G., & Carlbring, P. (2014). Psychometric evaluation of the Swedish version of the pure procrastination scale, the irrational procrastination scale, and the susceptibility to temptation scale in a clinical population. BMC Psychology, 2(1), 54. https://doi.org/10.1186/s40359-014-0054-z
Rubinov, M., Knock, S. A., Stam, C. J., Micheloyannis, S., Harris, A. W., Williams, L. M., & Breakspear, M. (2010). Small-world properties of nonlinear brain activity in schizophrenia. Human Brain Mapping, 30(2), 403-416. https://doi.org/10.1002/hbm.20517
Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: Uses and interpretations. NeuroImage, 52(3), 1059-1069. https://doi.org/10.1016/j.neuroimage.2009.10.003
Rubinov, M., Sporns, O., van Leeuwen, C., & Breakspear, M. (2009). Symbiotic relationship between brain structure and dynamics. BMC Neuroscience, 10, https://doi.org/10.1186/1471-2202-10-55
Rudie, J. D., Brown, J. A., Beck-Pancer, D., Hernandez, L. M., Dennis, E. L., Thompson, P. M., Bookheimer, S. Y., & Dapretto, M. (2013). Altered functional and structural brain network organization in autism. Neuroimage-Clinical, 2, 79-94. https://doi.org/10.1016/j.nicl.2012.11.006
Satterthwaite, T. D., Wolf, D. H., Pinkham, A. E., Ruparel, K., Elliott, M. A., Valdez, J. N., Overton, E., Seubert, J., Gur, R. E., Gur, R. C., & Loughead, J. (2011). Opposing amygdala and ventral striatum connectivity during emotion identification. Brain & Cognition, 76(3), 353-363. https://doi.org/10.1016/j.bandc.2011.04.005
Saunders, A., Oldenburg, I. A., Berezovskii, V. K., Johnson, C. A., Kingery, N. D., Elliott, H. L., Xie, T., Gerfen, C. R., & Sabatini, B. L. (2015). A direct GABAergic output from the basal ganglia to frontal cortex. Nature, 521(7550), 85. https://doi.org/10.1038/nature14179
Schlaier, J. R., Beer, A. L., Faltermeier, R., Fellner, C., Steib, K., Lange, M., Greenlee, M. W., Brawanski, A. T., & Anthofer, J. M. (2017). Probabilistic vs. deterministic fiber tracking and the influence of different seed regions to delineate cerebellar-thalamic fibers in deep brain stimulation. European Journal of Neuroscience, 45(12), 1623-1633. https://doi.org/10.1111/ejn.13575
Schuell, N. D., & Zaloom, C. (2011). The shortsighted brain: Neuroeconomics and the governance of choice in time. Social Studies of Science, 41(4), 515-538. https://doi.org/10.1177/0306312710397689
Sharp, D. J., Gregory, S., & Robert, L. (2014). Network dysfunction after traumatic brain injury. Nature Reviews Neurology, 10(3), 156-166. https://doi.org/10.1038/nrneurol.2014.15
Sirois, F. M. (2011). Procrastination and counterfactual thinking: Avoiding what might have been. British Journal of Social Psychology, 43(2), 269-286. https://doi.org/10.1348/0144666041501660
Sirois, F. M., & Pychyl, T. A. (2013). Procrastination and the priority of short-term mood regulation: Consequences for future self. Social and Personality Psychology Compass, 7(2), 115-127. https://doi.org/10.1111/spc3.12011
Smith, A. R., Steinberg, L., & Chein, J. (2014). The role of the anterior insula in adolescent decision making. Developmental Neuroscience, 36(3-4), 196-209. https://doi.org/10.1159/000358918
Smith, S. M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T. E., Mackay, C. E., Watkins, K. E., Ciccarelli, O., Cader, M. Z., Matthews, P. M., & Behrens, T. E. J. (2006). Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data. NeuroImage, 31(4), 1487-1505. https://doi.org/10.1016/j.neuroimage.2006.02.024
Smith, S. M., Johansen-Berg, H., Jenkinson, M., Rueckert, D., Nichols, T. E., Miller, K. L., Robson, M. D., Jones, D. K., Klein, J. C., Bartsch, A. J., & Behrens, T. E. J. (2007). Acquisition and voxelwise analysis of multi-subject diffusion data with Tract-Based Spatial Statistics. Nature Protocols, 2(3), 499-503. https://doi.org/10.1038/nprot.2007.45
Sporns, O., & Zwi, J. D. (2004). The small world of the cerebral cortex. Neuroinformatics, 2(2), 145-162. https://doi.org/10.1385/ni:2:2:145
Steel, P. (2007). The nature of procrastination: A meta-analytic and theoretical review of quintessential self-regulatory failure. Psychological Bulletin, 133(1), 65-94. https://doi.org/10.1037/0033-2909.133.1.65
Steel, P. (2010). Arousal, avoidant and decisional procrastinators: Do they exist? Personality & Individual Differences, 48(8), 926-934. https://doi.org/10.1016/j.paid.2010.02.025
Steel, P., & Ferrari, J. (2013). Sex, education and procrastination: An epidemiological study of procrastinators' characteristics from a global sample. European Journal of Personality, 27(1), 51-58. https://doi.org/10.1002/per.1851
Steel, P., & Klingsieck, K. B. (2016). Academic procrastination: Psychological antecedents revisited. Australian Psychologist, 51(1), 36-46. https://doi.org/10.1111/ap.12173
Svartdal, F. (2017). Measuring procrastination: Psychometric properties of the Norwegian versions of the Irrational Procrastination Scale (IPS) and the Pure Procrastination Scale (PPS). Scandinavian Journal of Educational Research, 61(1), 18-30. https://doi.org/10.1080/00313831.2015.1066439
Svartdal, F., & Steel, P. (2017). Irrational delay revisited: Examining five procrastination scales in a global sample. Frontiers in Psychology, 8. https://doi.org/10.3389/fpsyg.2017.01927
Tekin, S., & Cummings, J. L. (2002). Frontal-subcortical neuronal circuits and clinical neuropsychiatry-An update. Journal of Psychosomatic Research, 53(2), 647-654. https://doi.org/10.1016/s0022-3999(02)00428-2
Tournier, J. D., Mori, S., & Leemans, A. (2011). Diffusion tensor imaging and beyond. Magnetic Resonance in Medicine, 65(6), 1532-1556. https://doi.org/10.3171/2012.10.JNS121800
Turner, B. M., Forstmann, B. U., Wagenmakers, E. J., Brown, S. D., Sederberg, P. B., & Steyvers, M. (2013). A bayesian framework for simultaneously modeling neural and behavioral data. NeuroImage, 72(1), 193-206. https://doi.org/10.1016/j.neuroimage.2013.01.048
Valerie, B., Ham, T. E., Robert, L., Kinnunen, K. M., Mehta, M. A., Greenwood, R. J., & Sharp, D. J. (2012). Salience network integrity predicts default mode network function after traumatic brain injury. Proceedings of the National Academy of Sciences of the United States of America, 109(12), 4690-4695. https://doi.org/10.1073/pnas.1113455109
Varentsova, A., Zhang, S., & Arfanakis, K. (2014). Development of a high angular resolution diffusion imaging human brain template. NeuroImage, 91(2), 177-186. https://doi.org/10.1016/j.neuroimage.2014.01.009
Wagenmakers, E.-J., Love, J., Marsman, M., Jamil, T., Ly, A., Verhagen, J., Selker, R., Gronau, Q. F., Dropmann, D., Boutin, B., Meerhoff, F., Knight, P., Raj, A., van Kesteren, E.-J., van Doorn, J., Šmíra, M., Epskamp, S., Etz, A., Matzke, D., … Morey, R. D. (2018). Bayesian inference for psychology. Part II: Example applications with JASP. Psychonomic Bulletin & Review, 25(1), 58-76. https://doi.org/10.3758/s13423-017-1323-7
Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of 'small-world' networks. Nature, 393(6684), 440-442. https://doi.org/10.1038/30918
Yang, Y., Chen, Z., Zhang, R., Xu, T., & Feng, T. (2019). Neural substrates underlying episodic future thinking: A voxel-based morphometry study. Neuropsychologia, 138, 107255. https://doi.org/10.1016/j.neuropsychologia.2019.107255
Zanto, T. P., & Gazzaley, A. (2013). Fronto-parietal network: Flexible hub of cognitive control. Trends in Cognitive Sciences, 17(12), 602-603. https://doi.org/10.1016/j.tics.2013.10.001
Zhang, S., Liu, P., & Feng, T. (2019). To do it now or later: The cognitive mechanisms and neural substrates underlying procrastination. Wiley Interdisciplinary Reviews. Cognitive Science, 10(4), e1492. https://doi.org/10.1002/wcs.1492
Zolal, A., Sobottka, S. B., Podlesek, D., Linn, J., Rieger, B., Juratli, T. A., Schackert, G., & Kitzler, H. H. (2017). Comparison of probabilistic and deterministic fiber tracking of cranial nerves. Journal of Neurosurgery, 127(3), 613-621. https://doi.org/10.3171/2016.8.jns16363