Subcellular view of host-microbiome nutrient exchange in sponges: insights into the ecological success of an early metazoan-microbe symbiosis.
Animal–microbe symbiosis
Dissolved organic matter (DOM)
HMA–LMA
NanoSIMS
Nutrient translocation
Particulate organic matter (POM)
Journal
Microbiome
ISSN: 2049-2618
Titre abrégé: Microbiome
Pays: England
ID NLM: 101615147
Informations de publication
Date de publication:
14 02 2021
14 02 2021
Historique:
received:
02
07
2020
accepted:
16
12
2020
entrez:
15
2
2021
pubmed:
16
2
2021
medline:
19
3
2021
Statut:
epublish
Résumé
Sponges are increasingly recognised as key ecosystem engineers in many aquatic habitats. They play an important role in nutrient cycling due to their unrivalled capacity for processing both dissolved and particulate organic matter (DOM and POM) and the exceptional metabolic repertoire of their diverse and abundant microbial communities. Functional studies determining the role of host and microbiome in organic nutrient uptake and exchange, however, are limited. Therefore, we coupled pulse-chase isotopic tracer techniques with nanoscale secondary ion mass spectrometry (NanoSIMS) to visualise the uptake and translocation of The two sponge species showed significant enrichment of DOM- and POM-derived Here, we provide empirical evidence indicating that the prokaryotic communities of a high and a low microbial abundance sponge obtain nutritional benefits from their host-associated lifestyle. The metabolic interaction between the highly efficient filter-feeding host and its microbial symbionts likely provides a competitive advantage to the sponge holobiont in the oligotrophic environments in which they thrive, by retaining and recycling limiting nutrients. Sponges present a unique model to link nutritional symbiotic interactions to holobiont function, and, via cascading effects, ecosystem functioning, in one of the earliest metazoan-microbe symbioses. Video abstract.
Sections du résumé
BACKGROUND
Sponges are increasingly recognised as key ecosystem engineers in many aquatic habitats. They play an important role in nutrient cycling due to their unrivalled capacity for processing both dissolved and particulate organic matter (DOM and POM) and the exceptional metabolic repertoire of their diverse and abundant microbial communities. Functional studies determining the role of host and microbiome in organic nutrient uptake and exchange, however, are limited. Therefore, we coupled pulse-chase isotopic tracer techniques with nanoscale secondary ion mass spectrometry (NanoSIMS) to visualise the uptake and translocation of
RESULTS
The two sponge species showed significant enrichment of DOM- and POM-derived
CONCLUSIONS
Here, we provide empirical evidence indicating that the prokaryotic communities of a high and a low microbial abundance sponge obtain nutritional benefits from their host-associated lifestyle. The metabolic interaction between the highly efficient filter-feeding host and its microbial symbionts likely provides a competitive advantage to the sponge holobiont in the oligotrophic environments in which they thrive, by retaining and recycling limiting nutrients. Sponges present a unique model to link nutritional symbiotic interactions to holobiont function, and, via cascading effects, ecosystem functioning, in one of the earliest metazoan-microbe symbioses. Video abstract.
Identifiants
pubmed: 33583434
doi: 10.1186/s40168-020-00984-w
pii: 10.1186/s40168-020-00984-w
pmc: PMC7883440
doi:
Substances chimiques
Carbon
7440-44-0
Nitrogen
N762921K75
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Video-Audio Media
Langues
eng
Sous-ensembles de citation
IM
Pagination
44Références
FEMS Microbiol Ecol. 2018 Jun 1;94(6):
pubmed: 29701776
Front Microbiol. 2015 Apr 28;6:364
pubmed: 25972851
Environ Microbiol. 2014 Nov;16(11):3548-61
pubmed: 25088944
mBio. 2016 Apr 21;7(2):e00135-16
pubmed: 27103626
Prog Mol Subcell Biol. 2003;37:59-88
pubmed: 15825640
PLoS One. 2013 Aug 26;8(8):e72961
pubmed: 23991166
Zootaxa. 2016 Oct 24;4178(2):209-233
pubmed: 27811721
Integr Comp Biol. 2003 Feb;43(1):3-10
pubmed: 21680404
PLoS One. 2014 Oct 07;9(10):e109486
pubmed: 25289641
ISME J. 2018 Mar;12(3):860-868
pubmed: 29330535
Nature. 2003 Mar 6;422(6927):37-44
pubmed: 12621426
Proc Natl Acad Sci U S A. 2012 Jul 3;109(27):E1878-87
pubmed: 22699508
Mar Biotechnol (NY). 2018 Apr;20(2):131-143
pubmed: 29423641
ISME J. 2018 May;12(5):1308-1318
pubmed: 29386628
Science. 2013 Oct 4;342(6154):108-10
pubmed: 24092742
Bioessays. 2009 Jul;31(7):748-57
pubmed: 19492355
Microbiol Mol Biol Rev. 2007 Jun;71(2):295-347
pubmed: 17554047
Nature. 2014 Feb 6;506(7486):58-62
pubmed: 24476823
Proc Biol Sci. 2019 Dec 4;286(1916):20192153
pubmed: 31795848
Proc Natl Acad Sci U S A. 2015 Apr 7;112(14):4381-6
pubmed: 25713351
FEMS Microbiol Ecol. 2013 Jul;85(1):74-84
pubmed: 23432637
ISME J. 2020 Oct;14(10):2554-2567
pubmed: 32601480
Sci Rep. 2020 Oct 15;10(1):17515
pubmed: 33060808
Biol Bull. 2010 Dec;219(3):189-97
pubmed: 21183440
mBio. 2015 Feb 10;6(1):
pubmed: 25670779
Science. 1991 Dec 13;254(5038):1627-30
pubmed: 1721242
J Exp Biol. 2009 Dec;212(Pt 23):3892-900
pubmed: 19915132
J Ultrastruct Res. 1982 Jun;79(3):294-306
pubmed: 7086948
Trends Microbiol. 2019 Oct;27(10):836-849
pubmed: 31257129
ISME J. 2010 Dec;4(12):1557-67
pubmed: 20520651
ISME J. 2020 May;14(5):1100-1110
pubmed: 31992859
Sci Rep. 2016 Jan 07;6:18715
pubmed: 26740019
J Bacteriol. 1976 Oct;128(1):325-36
pubmed: 824274
ISME J. 2013 Jun;7(6):1116-25
pubmed: 23407307
Environ Microbiol. 2009 Sep;11(9):2228-43
pubmed: 19453700
Environ Microbiol. 2012 May;14(5):1224-39
pubmed: 22335606
PLoS Biol. 2019 Apr 12;17(4):e3000226
pubmed: 30978201
PeerJ. 2014 Dec 16;2:e695
pubmed: 25548731
Nat Microbiol. 2019 Jul;4(7):1149-1159
pubmed: 30936484
ISME J. 2017 Nov;11(11):2465-2478
pubmed: 28696422
Environ Microbiol. 2018 Feb;20(2):800-814
pubmed: 29194919
Science. 1983 Jan 28;219(4583):410-2
pubmed: 17815320
Mar Genomics. 2018 Feb;37:135-147
pubmed: 29198427
Environ Microbiol. 2019 Oct;21(10):3831-3854
pubmed: 31271506
Nat Rev Microbiol. 2012 Sep;10(9):641-54
pubmed: 22842661
ISME J. 2010 Jan;4(1):38-48
pubmed: 19617876
Microbiome. 2019 Aug 29;7(1):124
pubmed: 31466521
Trends Cell Biol. 2020 Mar;30(3):173-188
pubmed: 31987730
Nat Methods. 2012 Jul;9(7):671-5
pubmed: 22930834
FEMS Microbiol Ecol. 2006 Feb;55(2):167-77
pubmed: 16420625
Front Physiol. 2018 Mar 16;9:214
pubmed: 29615919
Proc Natl Acad Sci U S A. 2015 Mar 24;112(12):E1453-60
pubmed: 25775601
ISME J. 2017 Jul;11(7):1651-1666
pubmed: 28338677
Nat Commun. 2019 Sep 12;10(1):4134
pubmed: 31515490
PLoS One. 2013 May 31;8(5):e64848
pubmed: 23741404
Cell Tissue Res. 2019 Sep;377(3):527-547
pubmed: 31485720
Microbiome. 2018 Mar 9;6(1):46
pubmed: 29523192