An evolutionary trade-off between parasite virulence and dispersal at experimental invasion fronts.
Holospora undulata
Paramecium caudatum
disease
dispersal syndrome
eco-evolution
epidemics
experimental evolution
horizontal and vertical transmission
host-parasite interactions
range expansion
Journal
Ecology letters
ISSN: 1461-0248
Titre abrégé: Ecol Lett
Pays: England
ID NLM: 101121949
Informations de publication
Date de publication:
Apr 2021
Apr 2021
Historique:
revised:
30
11
2020
received:
24
08
2020
accepted:
23
12
2020
pubmed:
15
2
2021
medline:
19
3
2021
entrez:
14
2
2021
Statut:
ppublish
Résumé
Exploitative parasites are predicted to evolve in highly connected populations or in expanding epidemics. However, many parasites rely on host dispersal to reach new populations, potentially causing conflict between local transmission and global spread. We performed experimental range expansions in interconnected microcosms of the protozoan Paramecium caudatum, allowing natural dispersal of hosts infected with the bacterial parasite Holospora undulata. Parasites from range front treatments facilitated host dispersal and were less virulent, but also invested less in horizontal transmission than parasites from range cores. These differences were consistent with parameter estimates derived from an epidemiological model fitted on population-level time-series data. Our results illustrate how dispersal selection can have profound consequences for the evolution of parasite life history and virulence. Decrypting the eco-evolutionary processes that shape parasite 'dispersal syndromes' may be important for the management of spreading epidemics in changing environments, biological invasions or in other spatial non-equilibrium settings.
Types de publication
Letter
Langues
eng
Sous-ensembles de citation
IM
Pagination
739-750Subventions
Organisme : European Society for Evolutionary Biology
ID : Godfrey Hewitt mobility award to LN
Organisme : Schweizerischer Nationalfonds zur Förderung der wissenschaftlichen Forschung
ID : P2NEP3_184489 to GZ
Informations de copyright
© 2021 John Wiley & Sons Ltd.
Références
Alizon, S., Hurford, A., Mideo, N. & Van Baalen, M. (2009). Virulence evolution and the trade-off hypothesis: History, current state of affairs and the future. J. Evol. Biol., 22, 245-259.
Andre, J.-B. & Hochberg, M.E. (2005). Virulence evolution in emerging infectious diseases. Evolution, 59, 1406-1412.
Bahl, J., Nelson, M.I., Chan, K.H., Chen, R., Vijaykrishna, D., Halpin, R.A. et al. (2011). Temporally structured metapopulation dynamics and persistence of influenza A H3N2 virus in humans. Proc. Natl. Acad. Sci. USA, 108, 19359-19364.
Bates, D., Machler, M., Bolker, B.M. & Walker, S.C. (2015). Fitting linear mixed-effect models using lme4. J. Stat, Softw.
Bauer, A., Haine, E.R., Perrot-Minnot, M.J. & Rigaud, T. (2005). The acanthocephalan parasite Polymorphus minutus alters the geotactic and clinging behaviours of two sympatric amphipod hosts: The native Gammarus pulex and the invasive Gammarus roeseli. J. Zool., 267, 39-43.
Berngruber, T.W., Lion, S. & Gandon, S. (2015). Spatial structure, transmission modes and the evolution of viral exploitation strategies. PLoS Pathog., 11, e1004810.
Boots, M., Hudson, P.J. & Sasaki, A. (2004). Large shifts in pathogen virulence relate to host population structure. Science, 303, 842-844.
Boots, M. & Mealor, M. (2007). Local interactions select for lower pathogen infectivity. Science, 315, 1284-1286.
Boots, M. & Sasaki, A. (1999). “Small worlds” and the evolution of virulence: infection occurs locally and at a distance. Proc. R. Soc. B Biol. Sci., 266, 1933-1938.
Brockhurst, M.A. & Koskella, B. (2013). Experimental coevolution of species interactions. Trends Ecol. Evol., 28, 367-375.
Bull, J.J. (1994). Virulence. Evolution, 48, 1423-1437.
Burton, O.J., Phillips, B.L. & Travis, J.M.J. (2010). Trade-offs and the evolution of life-histories during range expansion. Ecol. Lett., 13, 1210-1220.
Calcagno, V., Mouquet, N., Jarne, P. & David, P. (2006). Coexistence in a metacommunity: the competition-colonization trade-off is not dead. Ecol. Lett., 9, 897-907.
Chinazzi, M., Davis, J.T., Ajelli, M., Gioannini, C., Litvinova, M., Merler, S. et al. (2020). The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak. Science, 368, 395-400.
Clark, N.J., Clegg, S.M., Sam, K., Goulding, W., Koane, B. & Wells, K. (2018). Climate, host phylogeny and the connectivity of host communities govern regional parasite assembly. Divers. Distrib., 24, 13-23.
Cressler, C.E., McLeod, D.V., Rozins, C., Van Den Hoogen, J. & Day, T. (2016). The adaptive evolution of virulence: a review of theoretical predictions and empirical tests. Parasitology, 143, 915-930.
Dohra, H., Suzuki, H., Suzuki, T., Tanaka, K. & Fujishima, M. (2013). Draft genome sequence of Holospora undulata strain HU1, a micronucleus-specific symbiont of the ciliate Paramecium caudatum. Genome Announc., 1, 4-5.
Dudas, G., Carvalho, L.M., Bedford, T., Tatem, A.J., Baele, G., Faria, N.R. et al. (2017). Virus genomes reveal factors that spread and sustained Ebola epidemic. Physiol. Behav., 544, 309-315.
Dunn, A.M. & Hatcher, M.J. (2015). Parasites and biological invasions: Parallels, interactions, and control. Trends Parasitol., 31, 189-199.
Fellous, S., Quillery, E., Duncan, A.B. & Kaltz, O. (2011). Parasitic infection reduces dispersal of ciliate host. Biol. Lett., 7, 327-329.
Fels, D. & Kaltz, O. (2006). Temperature-dependent transmission and latency of Holospora undulata, a micronucleus-specific parasite of the ciliate Paramecium caudatum. Proc. R. Soc. B Biol. Sci., 273, 1031-1038.
Fels, D., Vignon, M. & Kaltz, O. (2008). Ecological and genetic determinants of multiple infection and aggregation in a microbial host-parasite system. Parasitology, 135, 1373-1383.
Fox, J. & Weisberg, S. (2018). An R Companion to Applied Regression. SAGE Publication Inc., London.
Friedenberg, N.A. (2003). Experimental evolution of dispersal in spatiotemporally variable microcosms. Ecol. Lett., 6, 953-959.
Fronhofer, E.A. & Altermatt, F. (2015). Eco-evolutionary feedbacks during experimental range expansions. Nat. Commun., 6, 6844.
Fronhofer, E.A., Legrand, D., Altermatt, F., Ansart, A., Blanchet, S., Bonte, D. et al. (2017). Bottom-up and top-down control of dispersal across major organismal groups: a coordinated distributed experiment. Nat. Ecol. Evol., 2, 1859-1863.
Gandon, S. & Day, T. (2009). Evolutionary epidemiology and the dynamics of adaptation. Evolution, 63, 826-838.
Görtz, H.D. & Dieckmann, J. (1980). Life cycle and infectivity of Holospora elegans Haffkine, a micronucleus-specific symbiont of Paramecium caudatum (Ehrenberg). Protistologia, 16, 591-603.
Griette, Q., Raoul, G. & Gandon, S. (2015). Virulence evolution at the front line of spreading epidemics. Evolution, 69, 2810-2819.
Hawley, D.M., Davis, A.K. & Dhondt, A.A. (2007). Transmission-relevant behaviours shift with pathogen infection in wild house finches (Carpodacus mexicanus). Can. J. Zool., 85, 752-757.
Hawley, D.M., Dhondt, K.V., Dobson, A.P., Grodio, J.L., Hochachka, W.M., Ley, D.H. et al. (2010). Common garden experiment reveals pathogen isolate but no host genetic diversity effect on the dynamics of an emerging wildlife disease. J. Evol. Biol., 23, 1680-1688.
Hawley, D.M., Osnas, E.E., Dobson, A.P., Hochachka, W.M. & Ley, D.H. (2013). Parallel patterns of increased virulence in a recently emerged wildlife pathogen. PLoS Biol., 11, e1001570.
Holmes, E.C., Dudas, G., Rambaut, A. & Andersen, K.G. (2016). The evolution of Ebola virus: Insights from the 2013-2016 epidemic. Nature, 538, 193-200.
Jousimo, J., Tack, A.J.M., Ovaskainen, O., Mononen, T., Susi, H., Tollenaere, C. et al. (2014). Ecological and evolutionary effects of fragmentation on infectious disease dynamics. Science, 344, 1289-1293.
Kaltz, O., Koella, J.C., Evolutive, L.D.P., Pierre, U. & Bernard, S. (2003). Host growth conditions regulate the plasticity of horizontal and vertical transmission in Holospora undulata, a bacterial parasite of the protozoan Paramecium caudatum. Evolution, 57, 1535-1542.
Kamo, M. & Boots, M. (2006). The evolution of parasite dispersal, transmission, and virulence in spatial host populations. Evol. Ecol. Res., 8, 1333-1347.
Kamo, M., Sasaki, A. & Boots, M. (2007). The role of trade-off shapes in the evolution of parasites in spatial host populations: An approximate analytical approach. J. Theor. Biol., 244, 588-596.
Kelehear, C., Brown, G.P. & Shine, R. (2012). Rapid evolution of parasite life history traits on an expanding range-edge. Ecol. Lett., 15, 329-337.
Kerr, B., Neuhauser, C., Bohannan, B.J.M. & Dean, A.M. (2006). Local migration promotes competitive restraint in a host-pathogen “tragedy of the commons”. Nature, 442, 75-78.
Kubisch, A., Holt, R.D., Poethke, H.J. & Fronhofer, E.A. (2014). Where am I and why? Synthesizing range biology and the eco-evolutionary dynamics of dispersal. Oikos, 123, 5-22.
Lion, S., Van Baalen, M. & Wilson, W.G. (2006). The evolution of parasite manipulation of host dispersal. Proc. R. Soc. B Biol. Sci., 273, 1063-1071.
Lion, S. & Gandon, S. (2015). Evolution of spatially structured host-parasite interactions. J. Evol. Biol., 28, 10-28.
Lipsitch, M., Siller, S. & Nowak, M.A. (1996). The evolution of virulence in pathogens with vertical and horizontal transmission. Evolution, 50, 1729-1741.
Magalon, H., Nidelet, T., Martin, G. & Kaltz, O. (2010). Host growth conditions influence experimental evolution of life history and virulence of a parasite with vertical and horizontal transmission. Evolution, 64, 2126-2138.
Martini, X., Hoffmann, M., Coy, M.R., Stelinski, L.L. & Pelz-Stelinski, K.S. (2015). Infection of an insect vector with a bacterial plant pathogen increases its propensity for dispersal. PLoS One, 10, 1-16.
May, R.M. & Anderson, R.M. (1983). Epidemiology and genetics in the coevolution of parasites and hosts. Proc. R. Soc. B Biol. Sci., 219, 281-313.
Nidelet, T. & Kaltz, O. (2007). Direct and correlated responses to selection in a host-parasite system: Testing for the emergence of genotype specificity. Evolution, 61, 1803-1811.
Nidelet, T., Koella, J.C. & Kaltz, O. (2009). Effects of shortened host life span on the evolution of parasite life history and virulence in a microbial host-parasite system. BMC Evol. Biol., 9, 1-10.
Nørgaard, L.S., Phillips, B.L. & Hall, M.D. (2019). Infection in patchy populations: Contrasting pathogen invasion success and dispersal at varying times since host colonization. Evol. Lett., 3, 555-566.
North, A.R. & Godfray, H.C.J. (2017). The dynamics of disease in a metapopulation: The role of dispersal range. J. Theor. Biol., 418, 57-65.
Ochocki, B.M. & Miller, T.E.X. (2017). Rapid evolution of dispersal ability makes biological invasions faster and more variable. Nat. Commun., 8, 1-8.
Oliveri, I., Michalakis, Y. & Gouyon, P.-H. (1995). Metapopulation genetics and the evolution of dispersal. Am. Nat., 146, 202-228.
Osnas, E.E., Hurtado, P.J. & Dobson, A.P. (2015). Evolution of pathogen virulence across space during an epidemic. Am. Nat., 185, 332-342.
Parratt, S.R., Numminen, E. & Laine, A.-L. (2016). Infectious disease dynamics in heterogeneous landscapes. Annu. Rev. Ecol. Evol. Syst., 47, 283-306.
Penczykowski, R.M., Laine, A.L. & Koskella, B. (2016). Understanding the ecology and evolution of host-parasite interactions across scales. Evol. Appl., 9, 37-52.
Pennekamp, F., Schtickzelle, N. & Petchey, O.L. (2015). BEMOVI, software for extracting behavior and morphology from videos, illustrated with analyses of microbes. Ecol. Evol., 5, 2584-2595.
Pettersson, J.H.O., Bohlin, J., Dupont-Rouzeyrol, M., Brynildsrud, O.B., Alfsnes, K., Cao-Lormeau, V.M. et al. (2018). Re-visiting the evolution, dispersal and epidemiology of Zika virus in Asia article. Emerg. Microbes Infect., 7, 1-8.
Phillips, B.L., Brown, G.P., Shine, R., Benjamin, R.P., Gregory, P., Shine, R.et al. (2010). Life-history evolution in range-shifting populations. Ecology, 91, 1617-1627.
Phillips, B.L. & Puschendorf, R. (2013). Do pathogens become more virulent as they spread? Evidence from the amphibian declines in Central America. Proc. Biol. Sci., 280, 20131290.
Restif, O. & Kaltz, O. (2006). Condition-dependent virulence in a horizontally and vertically transmitted bacterial parasite. Oikos, 114, 148-158.
de Roode, J.C., Pedersen, A.B., Hunter, M.D. & Altizer, S. (2008). Host plant species affects virulence in monarch butterfly parasites. J. Anim. Ecol., 77, 120-126.
Rosenbaum, B., Raatz, M., Weithoff, G., Fussmann, G.F. & Gaedke, U. (2019). Estimating parameters from multiple time series of population dynamics using bayesian inference. Front. Ecol. Evol, 6, 234.
Su, M., Chen, G. & Yang, Y. (2019). Dynamics of host-parasite interactions with horizontal and vertical transmissions in spatially heterogeneous environment. Phys. A, 517, 452-458.
Thieme, H.R. (2018). Mathematics in Population Biology. Princeton University Press, Princeton.
Viboud, C., Bjørnstad, O.N., Smith, D.L., Simonsen, L., Miller, M.A. & Grenfell, B.T. (2006). Synchrony, waves, and spatial hierarchies in the spread of influenza. Science, 312, 447-451.
Weiler, J., Zilio, G., Zeballos, N., Nørgaard, L., Conce Alberto, W.D., Krenek, S. et al. (2020). Among-Strain variation in resistance of Paramecium caudatum to the endonuclear parasite Holospora undulata: Geographic and lineage-specific patterns. Front Microbiol., 11, 603046.
Weitz, J.S., Li, G., Gulbudak, H., Cortez, M.H. & Whitaker, R.J. (2019). Viral invasion fitness across a continuum from lysis to latency. Virus Evol., 5, 1-9.
Wichterman, R. (1986). The Biology of Paramecium. Plenum Press, New York.
Yin, J. (1993). Evolution of bacteriophage T7 in a growing plaque. J. Bacteriol., 175, 1272-1277.