Cadmium contamination in agricultural soils of Bangladesh and management by application of organic amendments: evaluation of field assessment and pot experiments.
Biochar
Cadmium
Health risk
Heavy metals
Organic amendment
Vermicompost
Journal
Environmental geochemistry and health
ISSN: 1573-2983
Titre abrégé: Environ Geochem Health
Pays: Netherlands
ID NLM: 8903118
Informations de publication
Date de publication:
Sep 2021
Sep 2021
Historique:
received:
07
04
2020
accepted:
23
01
2021
pubmed:
15
2
2021
medline:
25
11
2021
entrez:
14
2
2021
Statut:
ppublish
Résumé
In recent years, cadmium (Cd) contamination in agricultural soils and its subsequent transfer to crops is one of the high-priority environmental and public health issues of global concern, especially in densely populated developing countries like Bangladesh. However, no effective strategy has been introduced or implemented yet to manage Cd-contaminated soils in order to sustain agricultural production with no human health risks. In this study, agricultural soil samples were collected from 60 locations of 10 upazilas from Tangail district to assess the extent of soil Cd contamination. The Cd concentration ranged from 0.83 to 4.08 mg kg
Identifiants
pubmed: 33582940
doi: 10.1007/s10653-021-00829-x
pii: 10.1007/s10653-021-00829-x
doi:
Substances chimiques
Soil
0
Soil Pollutants
0
Cadmium
00BH33GNGH
Charcoal
16291-96-6
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
3557-3582Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature.
Références
Adewole, M. B., & Igberaese, S. O. (2011). Growth, yield and sensory properties of organically produced Amaranthus bybridus Linn. In A. T. Salami & O. O. I. Orimoogunje (Eds.), Environmental research and challenges of sustainable development in Nigeria (pp. 454–465). Ile-Ife, Nigeria: Obafemi Awolowo University Press.
Adiloğlu, S., Bellitürk, K., Solmaz, Y., Zahmacıoğlu, A., Kocabaş, A., & Adiloğlu, A. (2017). Effect of the various doses of vermicompost implementation on some heavy metal contents (Cr, Co, Cd, Ni, Pb) of cucumber (Cucumis sativus L.). Eurasian. Journal of Forest Science, 5(1), 29–34.
Ahmad, I., Akhtar, M. J., Zahir, Z. A., & Mitter, B. (2015). Organic amendments: effects on cereals growth and cadmium remediation. International Journal of Environmental Science and Technology, 12(9), 2919–2928.
doi: 10.1007/s13762-014-0695-8
Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., et al. (2014). Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere, 99, 19–23.
doi: 10.1016/j.chemosphere.2013.10.071
Akinbile, C. O., Adefolaju, S., & Ajibade, F. O. (2016). Effect of organic and inorganic fertilizer on the growth and yield of Amaranthus curentus in Akure, Ondo state, Nigeria. 37th Annual Conference and Annual General Meeting, Minna-2016, Minna-Niger, Nigeria, pp. 337–343.
Akter, A., Begum, S., Sheikh, M. S., Haq, M. E., Bahar, M. I., Miah, M. A., et al. (2016). Impact of temperature raising on crop production in Tangail, Bangladesh: A case study in Tangail district, Bangladesh. Asian-Australian Journal of Bioscience and Biotechnology, 1(3), 539–546.
Alam, M. N., Jahan, M. S., Ali, M. K., Ashraf, M. A., & Islam, M. K. (2007). Effect of vermicompost and chemical fertilizers on growth, yield and yield components of potato in barind soils of Bangladesh. Journal of Applied Sciences Research, 3(12), 1879–1888.
AlKhader, A. M. F. (2015). The impact of phosphorus fertilizers on heavy metals content of soils and vegetables grown on selected farms in Jordan. Agrotechnology, 5(1), 137.
doi: 10.4172/2168-9881.1000137
Andersson, H., Bergström, L., Ulén, B., Djodjic, F., & Kirchmann, H. (2015). The role of subsoil as a source or sink for phosphorus leaching. Journal of Environmental Quality, 44, 535–544.
doi: 10.2134/jeq2014.04.0186
Angelova, V., Ivanova, R., Pevicharova, G., & Ivanov, K. (2010). Effect of organic amendments on heavy metals uptake by potato plants. 19th World congress of soil science, soil solutions for a changing world, Brisbane, Australia, Vol. 16.
Arancon, N. Q., Edwards, C. A., Lee, S., & Byrne, R. (2006). Effects of humic acids from vermicomposts on plant growth. European Journal of Soil Biology, 42(1), S65–S69.
doi: 10.1016/j.ejsobi.2006.06.004
Asmoay, A. S. A., Salman, S. A., El-Gohary, A. M., & Sabet, H. S. (2019). Evaluation of heavy metal mobility in contaminated soils between Abu Qurqas and Dyer Mawas Area, El Minya Governorate, Upper Egypt. Bulletin of the National Research Centre, 43, 88.
doi: 10.1186/s42269-019-0133-7
Atafar, Z., Mesdaghinia, A., Nouri, J., Homaee, M., Yunesian, M., Ahmadimoghaddam, M., et al. (2010). Effect of fertilizer application on soil heavy metal contamination. Environmental Monitoring and Assessment, 160, 83–89.
doi: 10.1007/s10661-008-0659-x
Atiyeh, R. M., Lee, S., Edwards, C. A., Arancon, N. Q., & Metzger, J. D. (2002). The influence of humic acids derived from earthworm-processed organic wastes on plant growth. Bioresource Technology, 84, 7–14.
doi: 10.1016/S0960-8524(02)00017-2
Azarmi, R., Giglou, M. T., & Taleshmikail, R. D. (2009). Influence of vermicompost on soil chemical and physical properties in tomato (Lycopersicum esculentum) field. African Journal of Biotechnology, 7(14), 2397–2401.
Banglapedia. (2020) Tangail district. National Encyclopedia of Bangladesh, Asiatic Society of Bangladesh. Available http://en.banglapedia.org/index.php?title=Tangail_District . Accessed on 14 September 2019.
BBS (Bangladesh Bureau of Statistics). (2012). Yearbook of Agricultural Statistics of Bangladesh (p. 143). Bangladesh Bureau of Statistics, Ministry of Planning: Government of the People’s Republic of Bangladesh, Dhaka, Bangladesh.
BBS (Bangladesh Bureau of Statistics). (2018). 2017 Statistical Yearbook Bangladesh. 37th edition. Bangladesh Bureau of Statistics, Statistics & Informatics Division (SID), Ministry of Planning, Government of the People’s Republic of Bangladesh, Dhaka, Bangladesh. Available http://bbs.portal.gov.bd/sites/default/files/files/bbs.portal.gov.bd/page/b2db8758_8497_412c_a9ec_6bb299f8b3ab/S_Y_B2017.pdf . Accessed 20 September 2020.
Bian, R. J., Joseph, S., Cui, L. Q., Pan, G. X., Li, L. Q., Liu, X. Y., et al. (2014). A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment. Journal of Hazardous Materials, 272, 121–128.
doi: 10.1016/j.jhazmat.2014.03.017
Blum, W. E. H., Spiegel, H., & Wenzel, W. W. (1996). Bodenzustandsinventur, Konzeption, Durchführung, Bewertung, Empfehlungen Zur Vereinheitlichung der Vorgangsweise in sterreich. Bundesministeriumfür Land and Forstwirtschaft, Wien. 2nd edition, pp. 102.
Branzini, A., & Zubillaga, M. S. (2012). Comparative use of soil organic and inorganic amendments in heavy metals stabilization. Applied and Environmental Soil Science, 2012, 721032. https://doi.org/10.1155/2012/721032 .
doi: 10.1155/2012/721032
Cai, K., Yu, Y., Zhang, M., & Kim, K. (2019). Concentration, source, and total health risks of cadmium in multiple media in densely populated areas, China. International Journal of Environmental Research and Public Health, 16, 2269. https://doi.org/10.3390/ijerph16132269 .
doi: 10.3390/ijerph16132269
Castaldi, P., Santona, L., & Melis, P. (2005). Heavy metal immobilization by chemical amendments in a polluted soil and influence on white lupin growth. Chemosphere, 60(3), 365–371.
doi: 10.1016/j.chemosphere.2004.11.098
CCME (Canadian Council of Ministers of the Environment). (2003). Canadian environmental quality guidelines. National Guidelines and Standards Office, Canadian Council of Ministers of the Environment. Available http://ceqg-rcqe.ccme.ca/en/index.html . Accessed 20 September 2019.
Ch’ng, H. Y., Ahmed, O. H., & Majid, N. M. A. (2014). Improving phosphorus availability in an acid soil using organic amendments produced from agroindustrial wastes. The Scientific World Journal, 2014, 506356. https://doi.org/10.1155/2014/506356 .
doi: 10.1155/2014/506356
Chaoui, H. I., Zibilske, L. M., & Ohno, T. (2003). Effects of earthworm casts and compost on soil microbial activity and plant nutrient availability. Soil Biology and Biochemistry, 35(2), 295–302.
doi: 10.1016/S0038-0717(02)00279-1
Chen, L., Wang, G., Wu, S., Xia, Z., Cui, Z., Wang, C., et al. (2019). Heavy metals in agricultural soils of the Lihe river watershed, East China: Spatial distribution, ecological risk, and pollution source. International Journal of Environmental Research and Public Health, 16, 2094.
doi: 10.3390/ijerph16122094
Cordell, D., Drangert, J. O., & White, S. (2009). The story of phosphorus: Global food security and food for thought. Global Environmental Change, 19(2), 292–305.
doi: 10.1016/j.gloenvcha.2008.10.009
Di, W. U., Yanfang, F. E. N. G., Lihong, X. U. E., Manqiang, L. I. U., Bei, Y. A. N. G., Feng, H. U., et al. (2019). Biochar combined with vermicompost increases crop production while reducing ammonia and nitrous oxide emissions from a paddy soil. Pedosphere, 29(1), 82–94.
doi: 10.1016/S1002-0160(18)60050-5
Dourado, M. N., Martins, P. F., Quecine, M. C., Piotto, F. A., Souza, L. A., Franco, M. R., et al. (2013). Burkholderia sp. SCMS54 reduces cadmium toxicity and promotes growth in tomato. Annals of Applied Biology, 163(3), 494–507.
Egashira, K., Takenaka, J., Shuto, S., & Moslehuddin, A. Z. M. (2003). Phosphorus status of some paddy soils in Bangladesh. Soil Science and Plant Nutrition, 49(5), 751–755.
doi: 10.1080/00380768.2003.10410335
Ennaji, W., Barakat, A., Baghdadi, M. E., & Rais, J. (2020). Heavy metal contamination in agricultural soil and ecological risk assessment in the northeast area of Tadla plain, Morocco. Journal of Sedimentary Environments, 5, 307–320.
doi: 10.1007/s43217-020-00020-9
Gadepalle, V. P., Ouki, S. K., & Hutchings, T. (2008). Remediation of copper and cadmium in contaminated soils using compost with inorganic amendments. Water Air & Soil Pollution, 196(1–4), 355–368.
Gambuś, F., & Wieczorek, J. (2012). Pollution of fertilizers with heavy metals. Ecological Chemistry and Engineering A, 19(4–5), 353–360.
Gayathri, V., & Anitha, D. (2018). Effect of different organic fertilizers on the growth of Amaranthus tricolor (L.). International Journal of Pharmacology and Phytochemical Research, 10(12), 363–366.
Goswami, L., Nath, A., Sutradhar, S., Bhattacharya, S. S., Kalamdhad, A., Vellingiri, K., et al. (2017). Application of drum compost and vermicompost to improve soil health, growth, and yield parameters for tomato and cabbage plants. Journal of Environmental Management, 200, 243–252.
doi: 10.1016/j.jenvman.2017.05.073
Guo, G., Zhang, D., & Wang, Y. (2019). Probabilistic human health risk assessment of heavy metal intake via vegetable consumption around Pb/Zn smelters in southwest China. International Journal of Environmental Research and Public Health, 16, 3267. https://doi.org/10.3390/ijerph16183267 .
doi: 10.3390/ijerph16183267
Hadi, M. R. H. S., Darz, M. T., Ghandehari, Z., & Riazi, G. (2011). Effects of vermicompost and amino acids on the flower yield and essential oil production from Matricaria chamomile L. Journal of Medicinal Plants Research, 5(23), 5611–5617.
Hamid, Y., Tang, L., Wang, X., Hussain, B., Yaseen, M., Aziz, M. Z., et al. (2018). Immobilization of cadmium and lead in contaminated paddy field using inorganic and organic additives. Scientific Reports, 8, 17839. https://doi.org/10.1038/s41598-018-35881-8 .
doi: 10.1038/s41598-018-35881-8
Hamzah, Z., & Shuhaimi, S. N. A. (2017). Biochar: effects on crop growth. IOP Conference Series: Earth and Environmental Science, 215, 012011. https://doi.org/10.1088/1755-1315/215/1/012011 .
doi: 10.1088/1755-1315/215/1/012011
Herencia, J. F., Ruiz-Porras, J. C., Melero, S., Garcia-Galavis, P. A., Morillo, E., & Maqueda, C. (2007). Comparison between organic and mineral fertilization for soil fertility levels, crop management concentrations, and yield. Agronomy Journal, 99(4), 973–983.
doi: 10.2134/agronj2006.0168
Houben, D., Laurent, E., & Philippe, S. (2013). Beneficial effects of biochar application to contaminated soils on the bioavailability of Cd, Pb and Zn and the biomass production of rapeseed (Brassica napus L.). Biomass and Bioenergy, 57, 196–204.
doi: 10.1016/j.biombioe.2013.07.019
Huq, S. I., & Alam, M. D. (2005). A handbook on analyses of soil, plant and water (p. 246). Bangladesh: BACER-DU, University of Dhaka.
IARC (International Agency for Research on Cancer). (2011). Agents classified by the IARC monographs, International Agency for Research on Cance. In: Oxford Handbook of Occupational Health, OUP Oxford: Oxford, UK.
Islam, M. S., Ahmed, M. K., Habibullah-Al-Mamun, M., & Raknuzzaman, M. (2015a). Trace elements in different land use soils of Bangladesh and potential ecological risk. Environmental Monitoring and Assessment, 187, 587.
doi: 10.1007/s10661-015-4803-0
Islam, M. S., Ahmed, M. K., Habibullah-Al-Mamun, M., & Raknuzzaman, M. (2015b). The concentration, source and potential human health risk of heavy metals in the commonly consumed foods in Bangladesh. Ecotoxicology and Environmental Safety, 122, 462–469.
doi: 10.1016/j.ecoenv.2015.09.022
Islam, M. M., Karim, M. R., Zheng, X., & Li, X. (2018a). Heavy metal and metalloid pollution in soil, water and foods in Bangladesh: A critical review. International Journal of Environmental Research and Public Health, 15, 2825. https://doi.org/10.3390/ijerph15122825 .
doi: 10.3390/ijerph15122825
Islam, M. S., Kormoker, T., Ali, M. M., & Proshad, R. (2018b). Ecological risk analysis of heavy metals toxicity from agricultural soils in the industrial areas of Tangail district, Bangladesh. SF Journal of Environmental and Earth Science, 1(2), 1022.
Jamali, M. K., Kazi, T. G., Arain, M. B., Afridi, H. I., Jalbani, N., Kandhro, G. A., et al. (2009). Heavy metal accumulation in different varieties of wheat (Triticum aestivum L.) grown in soil amended with domestic sewage sludge. Journal of Hazardous Materials, 164(2–3), 1386–1391.
doi: 10.1016/j.jhazmat.2008.09.056
Jamali, M. K., Kazi, T. G., Arain, M. B., Afridi, H. I., Jalbani, N., & Memon, A. R. (2006). Heavy metal contents of vegetables grown in soil, irrigated with mixtures of wastewater and sewage sludge in Pakistan, using ultrasonic-assisted pseudo-digestion. Journal of Agronomy and Crop Science, 193, 218–228.
doi: 10.1111/j.1439-037X.2007.00261.x
JECFA (Joint FAO/WHO Expert Committee on Food Additives). (2003). Food additives and food contaminants. FAO procedural guidelines for the Joint FAO/WHO Expert Committee on Food Additives (JECFA), Rome, February 2003.
Jiang, T.-Y., Jiang, J., Xu, R.-K., & Li, Z. (2012). Adsorption of Pb(II) on variable charge soils amended with rice-straw derived biochar. Chemosphere, 89(3), 249–256.
doi: 10.1016/j.chemosphere.2012.04.028
Jouquet, E. P., Bloquel, E., Doan, T. T., Ricoy, M., Orange, D., Rumpel, C., et al. (2011). Do compost and vermicompost improve macronutrient retention and plant growth in degraded tropical soils? Compost Science & Utilization, 19(1), 15–24.
doi: 10.1080/1065657X.2011.10736972
Kabata-Pendias, A., & Mukherjee, A. B. (2007). Trace elements from soil to human. Berlin: Springer.
doi: 10.1007/978-3-540-32714-1
Kadam, P. M. (2016). Study of pH and electrical conductivity of soil in Deulgaon Raja Taluka, Maharashtra. International Journal for Research in Applied Science & Engineering Technology, 4(4), 399–402.
Karer, J., Anna, W., Franz, Z., Gerald, D., Mario, W., Petronela-Bianca, P., et al. (2015). Effects of biochars and compost mixtures and inorganic additives on immobilization of heavy metals in contaminated soils. Water, Air, & Soil Pollution, 226, 342.
doi: 10.1007/s11270-015-2584-2
Kashem, M. A., & Singh, B. R. (1999). Heavy metal contamination of soil and vegetation in the vicinity of industries in Bangladesh. Water, Air, & Soil Pollution, 115, 347–361.
doi: 10.1023/A:1005193207319
Kaur, I., Gupta, A., Singh, B. P., Sharma, S., & Kumar, A. (2019). Assessment of radon and potentially toxic metals in agricultural soils of Punjab, India. Microchemical Journal, 146, 444–454.
doi: 10.1016/j.microc.2019.01.028
Kormoker, T., Proshad, R., Islam, M. S., Tusher, T. R., Uddin, M., Khadka, S., et al. (2020). Presence of toxic metals in rice with human health hazards in Tangail district of Bangladesh. International Journal of Environmental Health Research. https://doi.org/10.1080/09603123.2020.1724271 .
doi: 10.1080/09603123.2020.1724271
Kumar, U., Mukta, M., & Mia, M. Y. (2018). Changes in soil properties of four agro-ecological zones of Tangail district in Bangladesh. Progressive Agriculture, 29(4), 284–294.
doi: 10.3329/pa.v29i4.41342
Kumar, V., Sharma, A., Kaur, P., Sidhu, G. P. S., Bali, A. S., Bhardwaj, R., et al. (2019). Pollution assessment of heavy metals in soils of India and ecological risk assessment: A state-of-the-art. Chemosphere, 216, 449–462.
doi: 10.1016/j.chemosphere.2018.10.066
Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., & Crowley, D. (2011). Biochar effects on soil biota-A review. Soil Biology and Biochemistry, 43(9), 1812–1836.
doi: 10.1016/j.soilbio.2011.04.022
Li, Q., & Gao, Y. (2019). Remediation of Cd-, Pb- and Cu-contaminated agricultural soils by phosphate fertilization and applying biochar. Polish Journal of Environmental Studies, 28(4), 2697–2705.
doi: 10.15244/pjoes/92527
Liu, Y., Feng, L., Hu, H., Jiang, G., Cai, Z., & Deng, Y. (2012). Phosphorus release from low-grade rock phosphates by low molecular weight organic acids. Journal of Food, Agriculture & Environment, 10(1 part 2), 1001–1007.
Mamun, S. A., Arif, R. H., Parveen, Z., Aktar, M., & Islam, M. S. (2018). The urgency of studies on cadmium manifestation (Cd) in food chain. Journal of Environmental Science & Natural Resources, 11(1 & 2), 227–234.
Mamun, S. A., Chanson, G., Muliadi, B. E., Aktar, M., Lehto, N., et al. (2016). Municipal composts reduce the transfer of Cd from soil to vegetables. Environmental Pollution, 213, 8–15.
doi: 10.1016/j.envpol.2016.01.072
Mamun, S. A., Lehto, N., Cavanagh, J., McDowell, R., Aktar, M., Benyas, E., et al. (2017). Organic amendments derived from varied source materials reduce Cd uptake by potatoes. Journal of Environmental Quality, 46, 836–844.
doi: 10.2134/jeq2017.02.0059
Mar, S. S., & Okazaki, M. (2012). Investigation of Cd contents in several phosphate rocks used for the production of fertilizer. Microchemical Journal, 104, 17–21.
doi: 10.1016/j.microc.2012.03.020
McBeath, T. M., McLaughlin, M. J., Kirby, J. K., & Armstrong, R. D. (2012). The effect of soil water status on fertilizer, topsoil and subsoil phosphorus utilization by wheat. Plant and Soil, 358, 337–348.
doi: 10.1007/s11104-012-1177-8
Meharg, A. A., Norton, G., Deacon, C., Williams, P., Adomako, E. E., Price, A., et al. (2013). Variation in rice cadmium related to human exposure. Environmental Science & Technology, 47(11), 5613–5618.
doi: 10.1021/es400521h
Mensah, A. K., & Frimpong, K. A. (2018). Biochar and/or compost applications improve soil properties, growth, and yield of Maize grown in acidic rainforest and coastal Savannah soils in Ghana. International Journal of Agronomy, 2018, 6837404.
doi: 10.1155/2018/6837404
Menzies, N. (2009). The science of phosphorus nutrition: Forms in the soil, plant uptake, and plant response. Australian Government Grains Research & Development Corporation. Available https://grdc.com.au/resources-and-publications/grdc-update-papers/tab-content/grdc-update-papers/2009/02/the-science-of-phosphorus-nutrition-forms-in-the-soil-plant-uptake-and-plant-response . Accessed 20 September 2019.
Miah, M. A., Uddin, N., Hoque, M. H., Haq, M. E., & Biswas, A. K. (2016). Physicochemical properties of soil at Habla union of Basail upazila in Tangail. Asian Journal of Medical and Biological Research, 2(4), 664–671.
doi: 10.3329/ajmbr.v2i4.31012
Mo, L., Zhou, Y., Gopalakrishnana, G., & Li, X. (2020). Spatial distribution and risk assessment of toxic metals in agricultural soils from endemic nasopharyngeal carcinoma region in South China. Open Geosciences, 12, 568–579.
doi: 10.1515/geo-2020-0110
Moghadam, A. R. L., Ardebili, Z. O., & Saidi, F. (2012). Vermicompost induced changes in growth and development of Lilium Asiatic hybrid var Navona. African Journal of Agricultural Research, 7(17), 2609–2621.
Mohawesh, O., Coolong, T., Aliedeh, M., & Qaraleh, S. (2018). Greenhouse evaluation of biochar to enhance soil properties and plant growth performance under arid environment Bulgarian. Journal of Agricultural Science, 24(6), 1012–1019.
MPSSWRD (Master Plan Study on Small Scale Water Resources Development). 2005. Annex 16: Master plan study on small scale water resources development for poverty alleviation through effective use of surface water in greater Mymensingh. Japan International Cooperation Agency (JICA) and Ministry of Local Government, Bangladesh. Available https://openjicareport.jica.go.jp/pdf/11814605_14.pdf. Accessed 20 September 2019.
Murray, H., Pinchin, T. A., & Macfie, S. M. (2011). Compost application affects metal uptake in plants grown in urban garden soils and potential human health risk. Journal of Soils and Sediments, 11(5), 815–829.
doi: 10.1007/s11368-011-0359-y
MVROM (Ministerie van Volkshuisvesting, Ruimtelijke Ordening en Milieubeheer). (2000). Dutch target and intervention values, 2000. ANNEXES Circular on target values and intervention values for soil remediation. Ministry of Housing, Netherlands. Ministry of Housing, Spatial Planning and Environment, National Institute for Public Health and Environmental Protection (RIVM, Report numbers 725201001 to 725201008 inclusive, Report numbers 715810004, 715810008 to 715810010 inclusive, Report numbers 711701003 to 711701005 inclusive). Available https://esdat.net/Environmental%20Standards/Dutch/annexS_I2000Dutch%20Environmental%20Standards.pdf . Accessed 20 September 2019.
Naeem, M., Iqbal, J., & Bakhsh, M. A. A. H. A. (2006). Comparative study of inorganic fertilizers and organic manures on yield and yield components of mung bean (Vigna radiate L.). Journal of Agriculture & Social Sciences, 2(4), 227–229.
Naser, H. M., Shil, N. C., Mahmud, N. U., Rashid, M. H., & Hossain, K. M. (2009). Lead, cadmium and nickel contents of vegetables grown in industrially polluted and non-polluted areas of Bangladesh. Bangladesh Journal of Agricultural Research, 34(4), 545–554.
doi: 10.3329/bjar.v34i4.5831
Ngo, P. T., Rumpel, C., Ngo, Q. A., Alexis, M., Vargas, G. V., de la Luz Mora Gil, M., , et al. (2013). Biological and chemical reactivity and phosphorus forms of buffalo manure compost, vermicompost and their mixture with biochar. Bioresource Technology, 148, 401–407.
doi: 10.1016/j.biortech.2013.08.098
Oke, O. L. (1980). Amaranth in Nigeria. In: Proceedings of the Second Amaranth Conference, Rodale Press Emmaus. PA, pp. 22.
Oosterhuis F. H., Brouwer, F. M., & Wijnants, H. J. (2000). A possible EU wide charge on cadmium in phosphate fertilizers: Economic and environmental implications. Final report to the European Commission, Report to the European Commission, The Netherlands. pp. 10–15
Oshunsanya, S. O. (2018). Introductory chapter: Relevance of soil pH to agriculture. In: Oshunsanya, S. O. (Ed.) Soil pH for Nutrient Availability and Crop Performance. IntechOpen. https://doi.org/10.5772/intechopen.82551 . Available https://www.intechopen.com/books/soil-ph-for-nutrient-availability-and-crop-performance/introductory-chapter-relevance-of-soil-ph-to-agriculture
Piash, M. I., Hossain, M. F., & Parveen, Z. (2019). Effect of biochar and fertilizer application on the growth and nutrient accumulation of rice and vegetable in two contrast soils. Acta Scientific Agriculture, 3(2), 74–83.
Plaza, C., Hernandez, D., Fernandez, J. M., & Polo, A. (2006). Long-term effects of amendment with liquid swine manure on proton binding behavior of soil humic substances. Chemosphere, 65, 1321–1329.
doi: 10.1016/j.chemosphere.2006.04.026
Pramanik, P. (2010). Changes in microbial properties and nutrient dynamics in bagasse and coir during vermicomposting: Quantification of fungal biomass through ergosterol estimation in vermicompost. Waste Management, 30, 787–791.
doi: 10.1016/j.wasman.2009.12.007
Pusz, A. (2007). Influence of brown coal on limit of phytotoxicity of soils contaminated with heavy metals. Journal of Hazardous Materials, 149(3), 590–597.
doi: 10.1016/j.jhazmat.2007.06.115
Rahman, M., & Mian, M. M. (2016). Effect of soil physico-chemical properties on agriculture: A study in Tangail district, Bangladesh. Journal of Agriculture and Ecology Research, 5(2), 1–9.
doi: 10.9734/JAERI/2016/21565
Rahman, M. M., Nasrin, M. S., Uddin, M. A., Rahman, K. M., & Shamsunnahar, M. (2012). Physico-chemical properties of some soils of Madhupur upazila under Tangail district. Journal of Agroforestry for Environment, 6(1), 89–93.
RDA (Recommended Dietary Allowances). (1989). National Research Council (US) Subcommittee on the Tenth Edition of the Recommended Dietary Allowances (RDA). National Academies Press (US), Washington DC, USA.
Roberts, T. L., & Johnston, A. E. (2015). Phosphorus use efficiency and management in agriculture. Resources, Conservation and Recycling, 105(B), 275–281.
doi: 10.1016/j.resconrec.2015.09.013
Sahito, O. M., Kazi, T. G., Afridi, H. I., Baig, J. A., Talpur, F. N., Baloch, S., et al. (2016). Assessment of toxic metal uptake by different vegetables grown on soils amended with poultry waste: Risk assessment. Water, Air, & Soil Pollution, 227, 423.
doi: 10.1007/s11270-016-3123-5
Sanni, K. O., & Ewulo, B. S. (2015). Effects of phosphorus and organic fertilizers on the yield and proximate nutrient composition of lettuce (Lectuca sativa) in southwestern Nigeria. International Journal of Horticulture, 5(1), 1–7.
Shaheen, N., Irfan, N., Khan, I. N., Islam, S., Islam, M., & Ahmed, M. (2016). Presence of heavy metals in fruits and vegetables: health risk implications in Bangladesh. Chemosphere, 152, 431–438.
doi: 10.1016/j.chemosphere.2016.02.060
Shanker, A. K., Cervantes, C., Loza-Tavera, H., & Avudainayagam, S. (2005). Chromium toxicity in plants. Environmental International, 31(5), 739–753.
doi: 10.1016/j.envint.2005.02.003
Sheel, P. R., Chowdhury, M. A. H., Ali, M., & Mahmud, M. A. (2015). Physico-chemical characterization of some selected soil series of Mymensingh and Jamalpur districts of Bangladesh. Journal of the Bangladesh Agricultural University, 13(2), 197–206.
doi: 10.3329/jbau.v13i2.28780
Shirkhodaei, M., Darzi, M. T., & Hadi, M. H. S. (2014). Influence of vermicompost and biostimulant on the growth and biomass of coriander (Coriander sativum L.). International Journal of Advanced Biological and Biomedical Research, 2(3), 706–714.
Shukla, S., Bhargava, A., Chatterjee, A., Srivastava, A., & Singh, S. P. (2006). Genotypic variability in vegetable amaranth (Amaranthus tricolor L) for foliage yield and its contributing traits over successive cuttings and years. Euphytica, 151, 103–110.
doi: 10.1007/s10681-006-9134-3
Simmler, M., Ciadamidaro, L., Schulin, R., Madejón, P., Reiser, R., Clucas, L., et al. (2013). Lignite reduces the solubility and plant uptake of cadmium in pasturelands. Environmental Science & Technology, 47, 4497–4504.
doi: 10.1021/es303118a
Singh, R., Sharma, R. R., Kumar, S., Gupta, R. K., & Patil, R. T. (2008). Vermicompost substitution influences growth, physiological disorders, fruit yield and quality of strawberry (Fragaria × ananassa Duch.). Bioresource Technology, 99(17), 8507–8511.
doi: 10.1016/j.biortech.2008.03.034
Situmeang, Y. P., Suarta, M., Irianto, I. K., & Andriani, A. A. S. P. R. (2018). Biochar bamboo application on growth and yield of Red amaranth (Amaranthus tricolor L.). IOP Conference Series Materials Science and Engineering. https://doi.org/10.1088/1757-899X/434/1/012231 .
doi: 10.1088/1757-899X/434/1/012231
Soltangheisi, A., Rodrigues, M., Coelho, M. J. A., Gasperini, A. M., Sartor, L. R., & Pavinato, P. S. (2018). Changes in soil phosphorus lability promoted by phosphate sources and cover crops. Soil and Tillage Research, 179, 20–28.
doi: 10.1016/j.still.2018.01.006
Song, X., Liu, M., Wu, D., Griffiths, B. S., Jiao, J., Li, H., et al. (2015). Interaction matters: Synergy between vermicompost and PGPR agents improves soil quality, crop quality and crop yield in the field. Applied Soil Ecology, 89, 25–34.
doi: 10.1016/j.apsoil.2015.01.005
Sultana, M. S., Rana, S., Yamazaki, S., Aono, T., & Yoshida, S. (2017). Health risk assessment for carcinogenic and non-carcinogenic heavy metal exposures from vegetables and fruits of Bangladesh. Cogent Environmental Science, 3(1), 1291107. https://doi.org/10.1080/23311843.2017.1291107 .
doi: 10.1080/23311843.2017.1291107
Taylor, M. D. (1997). Accumulation of cadmium derived from fertilizers in New Zealand soils. Science of The Total Environment, 208, 123–126.
doi: 10.1016/S0048-9697(97)00273-8
Taylor, M., Gibb, R., Willoughby, J., Hewitt, A., & Arnold, G. (2007). Soil maps of cadmium in New Zealand. Wellington, New Zealand: Ministry of Agriculture and Forestry.
Tusher, T. R., Piash, A. S., Latif, M. A., Kabir, M. H., & Rana, M. M. (2017). Soil quality and heavy metal concentrations in agricultural lands around dyeing, glass and textile industries in Tangail district of Bangladesh. Journal of Environmental Science & Natural Resources, 10(2), 109–116.
doi: 10.3329/jesnr.v10i2.39020
USEPA (U.S. Environmental Protection Agency). (1989). Guidance Manual for Assessing Human Health Risks from Chemically Contaminated, Fish and Shellfish. U.S. Environmental Protection Agency (USEPA), EPA-503/8–89–002, Washington DC, USA
USEPA (U.S. Environmental Protection Agency). (2006). USEPA Region III Risk-Based Concentration Table: Technical Background Information. Washington DC, USA: United States Environmental Protection Agency.
USEPA (U.S. Environmental Protection Agency). (2016). Regional screening levels (RSLs) - Generic tables: Summary table. United States Environmental Protection Agency (USEPA), Washington DC, USA. Available http://19january2017snapshot.epa.gov/risk/regional-screening-levels-rsls-generic-tables-may-2016_.html . Accessed 20 September 2019.
van de Wiel, C. C., van der Linden, C. G., & Scholten, O. E. (2016). Improving phosphorus use efficiency in agriculture: opportunities for breeding. Euphytica, 207(1), 1–22.
doi: 10.1007/s10681-015-1572-3
Wang, X. L., Sato, T., Xing, B., & Tao, S. (2005). Health risks of heavy metals to the general public in Tianjin, China via consumption of vegetables and fish. Science of the Total Environment, 350(1–3), 28–37.
doi: 10.1016/j.scitotenv.2004.09.044
Wang, Y., Villamil, M. B., Davidson, P. C., & Akdeniz, N. (2019). A quantitative understanding of the role of co-composted biochar in plant growth using meta-analysis. Science of the Total Environment, 685, 741–752.
doi: 10.1016/j.scitotenv.2019.06.244
Yin, D., Wang, X., Chen, C., Peng, B., Tan, C., & Li, H. (2016). Varying effect of biochar on Cd, Pb and As mobility in a multi-metal contaminated paddy soil. Chemosphere, 152, 196–206.
doi: 10.1016/j.chemosphere.2016.01.044
Zeng, F., Wei, W., Li, M., Huang, R., Yang, F., & Duan, Y. (2015). Heavy metal contamination in rice-producing soils of Hunan province, China and potential health risks. International Journal of Environmental Research and Public Health, 12, 15584–15593.
doi: 10.3390/ijerph121215005
Zhao, Y. C., Wang, Z. G., Sun, W. X., Huang, B., Shi, X. Z., & Ji, J. F. (2010). Spatial interrelations and multi-scale sources of soil heavy metal availability in a typical urban-rural transition area in Yangtze River Delta region of China. Geoderma, 156, 216–227.
doi: 10.1016/j.geoderma.2010.02.020